Publications by authors named "Edward S Sheppard"

is a cell wall-less bacterial pathogen of the conducting airways, causing bronchitis and atypical or "walking" pneumonia in humans. recognizes sialylated and sulfated oligosaccharide receptors to colonize the respiratory tract, but the contribution of the latter is particularly unclear. We used chamber slides coated with sulfatide (3--sulfogalactosylceramide) to provide a baseline for binding and gliding motility.

View Article and Find Full Text PDF

Mycoplasma pneumoniae is a common cause of human respiratory tract infections, including bronchitis and atypical pneumonia. M. pneumoniae binds glycoprotein receptors having terminal sialic acid residues via the P1 adhesin protein.

View Article and Find Full Text PDF

The Mycoplasma pneumoniae terminal organelle functions in adherence and gliding motility and is comprised of at least eleven substructures. We used electron cryotomography to correlate impaired gliding and adherence function with changes in architecture in diverse terminal organelle mutants. All eleven substructures were accounted for in the prkC, prpC and P200 mutants, and variably so for the HMW3 mutant.

View Article and Find Full Text PDF

Mycoplasma pneumoniae is a human respiratory tract pathogen causing acute and chronic airway disease states that can include long-term carriage and extrapulmonary spread. The mechanisms of persistence and migration beyond the conducting airways, however, remain poorly understood. We previously described an acute exposure model using normal human bronchial epithelium (NHBE) in air-liquid interface culture, showing that M.

View Article and Find Full Text PDF

Mycoplasma pneumoniae is a cell wall-less bacterial pathogen of the human respiratory tract that accounts for > 20% of all community-acquired pneumonia (CAP). At present the most effective means for detection and strain-typing is quantitative polymerase chain reaction (qPCR), which can exhibit excellent sensitivity and specificity but requires separate tests for detection and genotyping, lacks standardization between available tests and between labs, and has limited practicality for widespread, point-of-care use. We have developed and previously described a silver nanorod array-surface enhanced Raman Spectroscopy (NA-SERS) biosensing platform capable of detecting M.

View Article and Find Full Text PDF

Mycoplasma pneumoniae is a cell wall-less bacterial pathogen of the human respiratory tract that accounts for up to 20% of community-acquired pneumonia. At present, the standard for detection and genotyping is quantitative polymerase chain reaction (qPCR), which can exhibit excellent sensitivity but lacks standardization and has limited practicality for widespread, point-of-care use. We previously described a Ag nanorod array-surface enhanced Raman spectroscopy (NA-SERS) biosensing platform capable of detecting M.

View Article and Find Full Text PDF

Mycoplasma pneumoniae is a major cause of respiratory disease in humans and accounts for as much as 20% of all community-acquired pneumonia. Existing mycoplasma diagnosis is primarily limited by the poor success rate at culturing the bacteria from clinical samples. There is a critical need to develop a new platform for mycoplasma detection that has high sensitivity, specificity, and expediency.

View Article and Find Full Text PDF

The cell wall-less prokaryote Mycoplasma pneumoniae is a major cause of community-acquired bronchitis and pneumonia in humans. Colonization is mediated largely by a differentiated terminal organelle, which is also the leading end in gliding motility. Cytadherence-associated proteins P30 and P65 appear to traffic concurrently to the distal end of developing terminal organelles.

View Article and Find Full Text PDF

The cell wall-less prokaryote Mycoplasma pneumoniae causes bronchitis and atypical pneumonia in humans. Mycoplasma attachment to the host respiratory epithelium is required for colonization and mediated largely by a differentiated terminal organelle. P30 is an integral membrane protein located at the distal end of the terminal organelle.

View Article and Find Full Text PDF

The wall-less prokaryote Mycoplasma pneumoniae, a common cause of chronic respiratory tract infections in humans, is considered to be among the smallest and simplest known cells capable of self-replication, yet it has a complex architecture with a novel cytoskeleton and a differentiated terminal organelle that function in adherence, cell division, and gliding motility. Recent findings have begun to elucidate the hierarchy of protein interactions required for terminal organelle assembly, but the engineering of its gliding machinery is largely unknown. In the current study, we assessed gliding in cytadherence mutants lacking terminal organelle proteins B, C, P1, and HMW1.

View Article and Find Full Text PDF