Publications by authors named "Edward Rietman"

One of the most important aspects of successful cancer therapy is the identification of a target protein for inhibition interaction. Conventionally, this consists of screening a panel of genes to assess which is mutated and then developing a small molecule to inhibit the interaction of two proteins or to simply inhibit a specific protein from all interactions. In previous work, we have proposed computational methods that analyze protein-protein networks using both topological approaches and thermodynamic quantification provided by Gibbs free energy.

View Article and Find Full Text PDF

We propose a new learning framework, signal propagation (sigprop), for propagating a learning signal and updating neural network parameters via a forward pass, as an alternative to backpropagation (BP). In sigprop, there is only the forward path for inference and learning. So, there are no structural or computational constraints necessary for learning to take place, beyond the inference model itself, such as feedback connectivity, weight transport, or a backward pass, which exist under BP-based approaches.

View Article and Find Full Text PDF

We analyzed protein expression data for Lupus patients, which have been obtained from publicly available databases. A combination of systems biology and statistical thermodynamics approaches was used to extract topological properties of the associated protein-protein interaction networks for each of the 291 patients whose samples were used to provide the molecular data. We have concluded that among the many proteins that appear to play critical roles in this pathology, most of them are either ribosomal proteins, ubiquitination pathway proteins or heat shock proteins.

View Article and Find Full Text PDF

We propose to use a Gibbs free energy function as a measure of the human brain development. We adopt this approach to the development of the human brain over the human lifespan: from a prenatal stage to advanced age. We used proteomic expression data with the Gibbs free energy to quantify human brain's protein-protein interaction networks.

View Article and Find Full Text PDF

In this paper, we analyze several cancer cell types from two seemingly independent angles: (a) the over-expression of various proteins participating in protein-protein interaction networks and (b) a metabolic shift from oxidative phosphorylation to glycolysis. We use large data sets to obtain a thermodynamic measure of the protein-protein interaction network, namely the associated Gibbs free energy. We find a strong inverse correlation between the percentage of energy production via oxidative phosphorylation and the Gibbs free energy of the protein networks.

View Article and Find Full Text PDF

We investigate free energy behavior in the nematode Caenorhabditis elegans during embryonic development. Our approach utilizes publicly available gene expression data, which gives us a picture of developmental changes in protein concentration and, resultantly, chemical potential and free energy. Our results indicate a clear global relationship between Gibbs free energy and time spent in development and provide thermodynamic indicators of the large-scale biological events of cell division and differentiation.

View Article and Find Full Text PDF

Personalized anticancer therapy requires continuous consolidation of emerging bioinformatics data into meaningful and accurate information streams. The use of novel mathematical and physical approaches, namely topology and thermodynamics can enable merging differing data types for improved accuracy in selecting therapeutic targets. We describe a method that uses chemical thermodynamics and two topology measures to link RNA-seq data from individual patients with academically curated protein-protein interaction networks to select clinically relevant targets for treatment of low-grade glioma (LGG).

View Article and Find Full Text PDF

Research has exposed cancer to be a heterogeneous disease with a high degree of inter-tumoral and intra-tumoral variability. Individual tumors have unique profiles, and these molecular signatures make the use of traditional histology-based treatments problematic. The conventional diagnostic categories, while necessary for care, thwart the use of molecular information for treatment as molecular characteristics cross tissue types.

View Article and Find Full Text PDF

Thermodynamics is an important driving factor for chemical processes and for life. Earlier work has shown that each cancer has its own molecular signaling network that supports its life cycle and that different cancers have different thermodynamic entropies characterizing their signaling networks. The respective thermodynamic entropies correlate with 5-year survival for each cancer.

View Article and Find Full Text PDF

Protein-protein interaction networks associated with diseases have gained prominence as an area of research. We investigate algebraic and topological indices for protein-protein interaction networks of 11 human cancers derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We find a strong correlation between relative automorphism group sizes and topological network complexities on the one hand and five year survival probabilities on the other hand.

View Article and Find Full Text PDF

Background: The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity.

View Article and Find Full Text PDF

Tumor dormancy is a highly prevalent stage in cancer progression. We have previously generated and characterized in vivo experimental models of human tumor dormancy in which micro-tumors remain occult until they spontaneously shift into rapid tumor growth. We showed that the dormant micro-tumors undergo a stable microRNA (miRNA) switch during their transition from dormancy to a fast-growing phenotype and reported the identification of a consensus signature of human tumor dormancy-associated miRNAs (DmiRs).

View Article and Find Full Text PDF

Theoretical biology encompasses a broad range of biological disciplines ranging from mathematical biology and biomathematics to philosophy of biology. Adopting a broad definition of "biology", Theoretical Biology and Medical Modelling, an open access journal, considers original research studies that focus on theoretical ideas and models associated with developments in biology and medicine.

View Article and Find Full Text PDF

Background: In this paper we propose a chemical physics mechanism for the initiation of the glycolytic switch commonly known as the Warburg hypothesis, whereby glycolytic activity terminating in lactate continues even in well-oxygenated cells. We show that this may result in cancer via mitotic failure, recasting the current conception of the Warburg effect as a metabolic dysregulation consequent to cancer, to a biophysical defect that may contribute to cancer initiation.

Model: Our model is based on analogs of thermodynamic concepts that tie non-equilibrium fluid dynamics ultimately to metabolic imbalance, disrupted microtubule dynamics, and finally, genomic instability, from which cancers can arise.

View Article and Find Full Text PDF

Age plays a major role in tumor incidence and is an important consideration when modeling the carcinogenesis process or estimating cancer risks. Epidemiological data show that from adolescence through middle age, cancer incidence increases with age. This effect is commonly attributed to a lifetime accumulation of cellular, particularly DNA, damage.

View Article and Find Full Text PDF

The 5-y survival for cancer patients after diagnosis and treatment is strongly dependent on tumor type. Prostate cancer patients have a >99% chance of survival past 5 y after diagnosis, and pancreatic patients have <6% chance of survival past 5 y. Because each cancer type has its own molecular signaling network, we asked if there are "signatures" embedded in these networks that inform us as to the 5-y survival.

View Article and Find Full Text PDF

In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems.

View Article and Find Full Text PDF

Background: We review and extend the work of Rosen and Casti who discuss category theory with regards to systems biology and manufacturing systems, respectively.

Results: We describe anticipatory systems, or long-range feed-forward chemical reaction chains, and compare them to open-loop manufacturing processes. We then close the loop by discussing metabolism-repair systems and describe the rationality of the self-referential equation f = f (f).

View Article and Find Full Text PDF

Next-generation sequencing has not been applied to protein-protein interactome network mapping so far because the association between the members of each interacting pair would not be maintained in en masse sequencing. We describe a massively parallel interactome-mapping pipeline, Stitch-seq, that combines PCR stitching with next-generation sequencing and used it to generate a new human interactome dataset. Stitch-seq is applicable to various interaction assays and should help expand interactome network mapping.

View Article and Find Full Text PDF