Neuronal tau reduction confers resilience against β-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied.
View Article and Find Full Text PDFEngineered nucleases have gained broad appeal for their ability to mediate highly efficient genome editing. However the specificity of these reagents remains a concern, especially for therapeutic applications, given the potential mutagenic consequences of off-target cleavage. Here we have developed an approach for improving the specificity of zinc finger nucleases (ZFNs) that engineers the FokI catalytic domain with the aim of slowing cleavage, which should selectively reduce activity at low-affinity off-target sites.
View Article and Find Full Text PDFGenome editing for therapeutic applications often requires cleavage within a narrow sequence window. Here, to enable such high-precision targeting with zinc-finger nucleases (ZFNs), we have developed an expanded set of architectures that collectively increase the configurational options available for design by a factor of 64. These new architectures feature the functional attachment of the FokI cleavage domain to the amino terminus of one or both zinc-finger proteins (ZFPs) in the ZFN dimer, as well as the option to skip bases between the target triplets of otherwise adjacent fingers in each zinc-finger array.
View Article and Find Full Text PDFBackground: Altering the biochemical makeup of chromatin by the incorporation of histone variants during development represents a key mechanism in regulating gene expression. The histone variant H2A.B, H2A.
View Article and Find Full Text PDFMutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.
View Article and Find Full Text PDFTo develop an effective and sustainable cell therapy for sickle cell disease (SCD), we investigated the feasibility of targeted disruption of the gene, either within exon 2 or at the GATAA motif in the intronic erythroid-specific enhancer, using zinc finger nucleases in human bone marrow (BM) CD34 hematopoietic stem and progenitor cells (HSPCs). Both targeting strategies upregulated fetal globin expression in erythroid cells to levels predicted to inhibit hemoglobin S polymerization. However, complete inactivation of resulting from bi-allelic frameshift mutations in exon 2 adversely affected erythroid enucleation.
View Article and Find Full Text PDFWiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease caused by mutations in the gene encoding the WAS protein (WASp). Here, induced pluripotent stem cells (iPSCs) were derived from a WAS patient (WAS-iPSC) and the endogenous chromosomal WAS locus was targeted with a wtWAS-2A-eGFP transgene using zinc finger nucleases (ZFNs) to generate corrected WAS-iPSC (cWAS-iPSC). WASp and GFP were first expressed in the earliest CD34(+)CD43(+)CD45(-) hematopoietic precursor cells and later in all hematopoietic lineages examined.
View Article and Find Full Text PDFGenome editing in hematopoietic stem and progenitor cells (HSPCs) is a promising novel technology for the treatment of many human diseases. Here, we evaluated whether the disruption of the C-C chemokine receptor 5 (CCR5) locus in pigtailed macaque HSPCs by zinc finger nucleases (ZFNs) was feasible. We show that macaque-specific CCR5 ZFNs efficiently induce CCR5 disruption at levels of up to 64% ex vivo, 40% in vivo early posttransplant, and 3% to 5% in long-term repopulating cells over 6 months following HSPC transplant.
View Article and Find Full Text PDFMismatch of human leukocyte antigens (HLA) adversely impacts the outcome of patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). This translates into the clinical requirement to timely identify suitable HLA-matched donors which in turn curtails the chances of recipients, especially those from a racial minority, to successfully undergo alloHSCT. We thus sought to broaden the existing pool of registered unrelated donors based on analysis that eliminating the expression of the HLA-A increases the chance for finding a donor matched at HLA-B, -C, and -DRB1 regardless of a patient's race.
View Article and Find Full Text PDFEngineered nucleases have transformed biological research and offer great therapeutic potential by enabling the straightforward modification of desired genomic sequences. While many nuclease platforms have proven functional, all can produce unanticipated off-target lesions and have difficulty discriminating between homologous sequences, limiting their therapeutic application. Here we describe a multi-reporter selection system that allows the screening of large protein libraries to uncover variants able to discriminate between sequences with substantial homology.
View Article and Find Full Text PDFRegulatory regions harbor multiple transcription factor (TF) recognition sites; however, the contribution of individual sites to regulatory function remains challenging to define. We describe an approach that exploits the error-prone nature of genome editing-induced double-strand break repair to map functional elements within regulatory DNA at nucleotide resolution. We demonstrate the approach on a human erythroid enhancer, revealing single TF recognition sites that gate the majority of downstream regulatory function.
View Article and Find Full Text PDFSite-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) -mediated site-specific integration of therapeutic transgenes within the albumin gene.
View Article and Find Full Text PDFProgrammed cell death-1 (PD-1) is expressed on activated T cells and represents an attractive target for gene-editing of tumor targeted T cells prior to adoptive cell transfer (ACT). We used zinc finger nucleases (ZFNs) directed against the gene encoding human PD-1 (PDCD-1) to gene-edit melanoma tumor infiltrating lymphocytes (TIL). We show that our clinical scale TIL production process yielded efficient modification of the PD-1 gene locus, with an average modification frequency of 74.
View Article and Find Full Text PDFTranscription activator-like effector (TALE) proteins have gained broad appeal as a platform for targeted DNA recognition, largely owing to their simple rules for design. These rules relate the base specified by a single TALE repeat to the identity of two key residues (the repeat variable diresidue, or RVD) and enable design for new sequence targets via modular shuffling of these units. A key limitation of these rules is that their simplicity precludes options for improving designs that are insufficiently active or specific.
View Article and Find Full Text PDFSickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification.
View Article and Find Full Text PDFGenetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. Here, using an endogenous LGR5-GFP reporter, we derived adult stem cells from hPSCs that gave rise to functional human intestinal tissue comprising all major cell types of the intestine.
View Article and Find Full Text PDFWe designed and engineered mitochondrially targeted obligate heterodimeric zinc finger nucleases (mtZFNs) for site-specific elimination of pathogenic human mitochondrial DNA (mtDNA). We used mtZFNs to target and cleave mtDNA harbouring the m.8993T>G point mutation associated with neuropathy, ataxia, retinitis pigmentosa (NARP) and the "common deletion" (CD), a 4977-bp repeat-flanked deletion associated with adult-onset chronic progressive external ophthalmoplegia and, less frequently, Kearns-Sayre and Pearson's marrow pancreas syndromes.
View Article and Find Full Text PDFModern agriculture demands crops carrying multiple traits. The current paradigm of randomly integrating and sorting independently segregating transgenes creates severe downstream breeding challenges. A versatile, generally applicable solution is hereby provided: the combination of high-efficiency targeted genome editing driven by engineered zinc finger nucleases (ZFNs) with modular 'trait landing pads' (TLPs) that allow 'mix-and-match', on-demand transgene integration and trait stacking in crop plants.
View Article and Find Full Text PDFDown's syndrome is a common disorder with enormous medical and social costs, caused by trisomy for chromosome 21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene, XIST (the X-inactivation gene). Using genome editing with zinc finger nucleases, we inserted a large, inducible XIST transgene into the DYRK1A locus on chromosome 21, in Down's syndrome pluripotent stem cells.
View Article and Find Full Text PDFLong-term engraftment of allogeneic cells necessitates eluding immune-mediated rejection, which is currently achieved by matching for human leukocyte antigen (HLA) expression, immunosuppression, and/or delivery of donor-derived cells to sanctuary sites. Genetic engineering provides an alternative approach to avoid clearance of cells that are recognized as "non-self" by the recipient. To this end, we developed designer zinc finger nucleases and employed a "hit-and-run" approach to genetic editing for selective elimination of HLA expression.
View Article and Find Full Text PDFMalaria afflicts over 200 million people worldwide, and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum-induced pathogenesis, including drug-resistance mechanisms, are clearly required.
View Article and Find Full Text PDFSelective inhibition of disease-related proteins underpins the majority of successful drug-target interactions. However, development of effective antagonists is often hampered by targets that are not druggable using conventional approaches. Here, we apply engineered zinc-finger protein transcription factors (ZFP TFs) to the endogenous phospholamban (PLN) gene, which encodes a well validated but recalcitrant drug target in heart failure.
View Article and Find Full Text PDFClinical-grade T cells are genetically modified ex vivo to express a chimeric antigen receptor (CAR) to redirect specificity to a tumor associated antigen (TAA) thereby conferring antitumor activity in vivo. T cells expressing a CD19-specific CAR recognize B-cell malignancies in multiple recipients independent of major histocompatibility complex (MHC) because the specificity domains are cloned from the variable chains of a CD19 monoclonal antibody. We now report a major step toward eliminating the need to generate patient-specific T cells by generating universal allogeneic TAA-specific T cells from one donor that might be administered to multiple recipients.
View Article and Find Full Text PDF