Significance: Imaging changes in subcellular structure is critical to understanding cell behavior but labeling can be impractical for some specimens and may induce artifacts. Although darkfield microscopy can reveal internal cell structures, it often produces strong signals at cell edges that obscure intracellular details. By optically eliminating the edge signal from darkfield images, we can resolve and quantify changes to cell structure without labeling.
View Article and Find Full Text PDFSignificance: Measuring changes in cellular structure and organelles is crucial for understanding disease progression and cellular responses to treatments. A label-free imaging method can aid in advancing biomedical research and therapeutic strategies.
Aim: This study introduces a computational darkfield imaging approach named quadrant darkfield (QDF) to separate smaller cellular features from large structures, enabling label-free imaging of cell organelles and structures in living cells.
The combination of multiple imaging modalities in a single microscopy system can enable new insights into biological processes. In this work, we describe the construction and rigorous characterization of a custom microscope with multimodal imaging in a single, cost-effective system. Our design utilizes advances in LED technology, robotics, and open-source software, along with existing optical components and precision optomechanical parts to offer a modular and versatile design.
View Article and Find Full Text PDFQuantitative phase imaging (QPI) measures the growth rate of individual cells by quantifying changes in mass versus time. Here, we use the breast cancer cell lines MCF-7, BT-474, and MDA-MB-231 to validate QPI as a multiparametric approach for determining response to single-agent therapies. Our method allows for rapid determination of drug sensitivity, cytotoxicity, heterogeneity, and time of response for up to 100,000 individual cells or small clusters in a single experiment.
View Article and Find Full Text PDFThe optical properties of polymer materials used for microfluidic device fabrication can impact device performance when used for optical measurements. In particular, conventional polymer materials used for microfluidic devices have a large difference in refractive index relative to aqueous media generally used for biomedical applications. This can create artifacts when used for microscopy-based assays.
View Article and Find Full Text PDFThe viscoelastic properties of mammalian cells can vary with biological state, such as during the epithelial-to-mesenchymal (EMT) transition in cancer, and therefore may serve as a useful physical biomarker. To characterize stiffness, conventional techniques use cell contact or invasive probes and as a result are low throughput, labor intensive, and limited by probe placement. Here, we show that measurements of biomass fluctuations in cells using quantitative phase imaging (QPI) provides a probe-free, contact-free method for quantifying changes in cell viscoelasticity.
View Article and Find Full Text PDFThe use of microfluidic devices has emerged as a defining tool for biomedical applications. When combined with modern microscopy techniques, these devices can be implemented as part of a robust platform capable of making simultaneous complementary measurements. The primary challenge created by the combination of these two techniques is the mismatch in refractive index between the materials traditionally used to make microfluidic devices and the aqueous solutions typically used in biomedicine.
View Article and Find Full Text PDF