Publications by authors named "Edward R Brzostek"

Introduction: Phosphorus (P) deficiency in plants creates a variety of metabolic perturbations that decrease photosynthesis and growth. Phosphorus deficiency is especially challenging for the production of bioenergy feedstock plantation species, such as poplars ( spp.), where fertilization may not be practically or economically feasible.

View Article and Find Full Text PDF

Given that global change is predicted to increase the frequency and severity of drought in temperate forests, it is critical to understand the degree to which plant belowground responses cascade through the soil system to drive ecosystem responses to water stress. While most research has focused on plant and microbial responses independently of each other, a gap in our understanding lies in the integrated response of plant-microbial interactions to water stress. We investigated the extent to which divergent belowground responses to reduced precipitation between sugar maple trees (Acer saccharum) versus oak trees (Oak spp.

View Article and Find Full Text PDF

Conceptual and empirical advances in soil biogeochemistry have challenged long-held assumptions about the role of soil micro-organisms in soil organic carbon (SOC) dynamics; yet, rigorous tests of emerging concepts remain sparse. Recent hypotheses suggest that microbial necromass production links plant inputs to SOC accumulation, with high-quality (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen from the atmosphere has helped forests in the northeastern USA store more carbon by giving them what they need to grow better.
  • A study showed that when trees got extra nitrogen, they used less carbon for roots and more for growing taller, which means more carbon is stored above ground.
  • The research found that even though the amount of leaf litter was the same, the soil in fertilized areas held more carbon and nitrogen because the plant litter broke down more slowly.
View Article and Find Full Text PDF
Article Synopsis
  • Roots help build up carbon in the soil, but we don't know much about how this happens.
  • We thought that trees with different types of fungi on their roots would store carbon differently, so we tested this in six forests.
  • We found that trees with one type of fungus stored more carbon in the soil than those with another type, meaning the type of fungus on a tree's roots plays an important role in how much carbon gets stored in the ground!
View Article and Find Full Text PDF
Article Synopsis
  • Forests with trees that connect to a type of fungi called ectomycorrhizal (ECM) store more carbon in the soil compared to those with trees linked to arbuscular mycorrhizae (AM) fungi when nitrogen levels go up.
  • The researchers thought this was because ECM trees get nitrogen differently than AM trees, which affects how nutrients cycle in the soil.
  • After studying soil samples over 27 years, they found that in ECM areas, fungal communities changed in the rhizosphere (around the roots), while in AM areas, bacterial communities changed in the bulk soil, helping to explain why ECM soils can hold more carbon despite the increased nitrogen.
View Article and Find Full Text PDF
Article Synopsis
  • - The study looked at how adding nitrogen to forests affects the ground's ability to break down organic matter, which is important for soil health.
  • - Researchers found that when trees received more nitrogen, they sent less carbon to their roots, which changed the types of bacteria and fungi in the soil.
  • - The changes in bacterial communities and enzyme activity showed that the whole ecosystem reacts to more nitrogen, not just the fungi as previously thought.
View Article and Find Full Text PDF

Ecosystem carbon (C) balance is hypothesised to be sensitive to the mycorrhizal strategies that plants use to acquire nutrients. To test this idea, we coupled an optimality-based plant nitrogen (N) acquisition model with a microbe-focused soil organic matter (SOM) model. The model accurately predicted rhizosphere processes and C-N dynamics across a gradient of stands varying in their relative abundance of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) trees.

View Article and Find Full Text PDF

While it is well established that plants associating with arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi cycle carbon (C) and nutrients in distinct ways, we have a limited understanding of whether varying abundance of ECM and AM plants in a stand can provide integrative proxies for key biogeochemical processes. We explored linkages between the relative abundance of AM and ECM trees and microbial functioning in three hardwood forests in southern Indiana, USA. Across each site's 'mycorrhizal gradient', we measured fungal biomass, fungal : bacterial (F : B) ratios, extracellular enzyme activities, soil carbon : nitrogen ratio, and soil pH over a growing season.

View Article and Find Full Text PDF

A central challenge in global ecology is the identification of key functional processes in ecosystems that scale, but do not require, data for individual species across landscapes. Given that nearly all tree species form symbiotic relationships with one of two types of mycorrhizal fungi - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - and that AM- and ECM-dominated forests often have distinct nutrient economies, the detection and mapping of mycorrhizae over large areas could provide valuable insights about fundamental ecosystem processes such as nutrient cycling, species interactions, and overall forest productivity. We explored remotely sensed tree canopy spectral properties to detect underlying mycorrhizal association across a gradient of AM- and ECM-dominated forest plots.

View Article and Find Full Text PDF

Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model.

View Article and Find Full Text PDF

Although it is increasingly being recognized that roots play a key role in soil carbon (C) dynamics, the magnitude and direction of these effects are unknown. Roots can accelerate soil C losses by provisioning microbes with energy to decompose organic matter or impede soil C losses by enhancing microbial competition for nutrients. We experimentally reduced belowground C supply to soils via tree girdling, and contrasted responses in control and girdled plots for three consecutive growing seasons.

View Article and Find Full Text PDF

While there is an emerging view that roots and their associated microbes actively alter resource availability and soil organic matter (SOM) decomposition, the ecosystem consequences of such rhizosphere effects have rarely been quantified. Using a meta-analysis, we show that multiple indices of microbially mediated C and nitrogen (N) cycling, including SOM decomposition, are significantly enhanced in the rhizospheres of diverse vegetation types. Then, using a numerical model that combines rhizosphere effect sizes with fine root morphology and depth distributions, we show that root-accelerated mineralization and priming can account for up to one-third of the total C and N mineralized in temperate forest soils.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how roots and fungi help trees get nutrients from soil when there's more CO₂ in the air.
  • They found that more nitrogen-releasing enzymes were produced near plant roots compared to where the fungi were, but fungi were better at breaking down carbon.
  • This study suggests that tree roots help with nitrogen cycling a lot when CO₂ levels are high, while fungi help break down carbon more.
View Article and Find Full Text PDF
Article Synopsis
  • Forests help take in carbon dioxide from the air, but how they react to drought can change how much carbon they can store.
  • Researchers found that forests show less change in their greenness during water stress compared to other types of ecosystems, meaning they can still struggle even if they look green.
  • By improving models to account for differences in how ecosystems respond to drought, scientists can better predict how much carbon forests will absorb, especially during dry years.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists predict that less water available in temperate forests could balance out the benefits of trees soaking up carbon due to rising CO2 levels and other factors.
  • * They studied tree growth and water levels in Indiana and nearby regions over many years to see how water stress affects trees.
  • * They found that even mild water shortages can significantly reduce the amount of carbon trees can store, which might make climate change worse.
View Article and Find Full Text PDF

Temperature and substrate availability constrain the activity of the extracellular enzymes that decompose and release nutrients from soil organic matter (SOM). Proteolytic enzymes are the primary class of enzymes involved in the depolymerization of nitrogen (N) from proteinaceous components of SOM, and their activity affects the rate of N cycling in forest soils. The objectives of this study were to determine whether and how temperature and substrate availability affect the activity of proteolytic enzymes in temperate forest soils, and whether the activity of proteolytic enzymes and other enzymes involved in the acquisition of N (i.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: