Publications by authors named "Edward R Block"

Interendothelial junctions play an important role in the maintenance of endothelial integrity and the regulation of vascular functions. We report here that cationic amino acid transporter-1 (CAT-1) is a novel interendothelial cell adhesion molecule (CAM). We identified that CAT-1 protein localized at cell-cell adhesive junctions, similar to the classic CAM of VE-cadherin, and knockdown of CAT-1 with siRNA led to an increase in endothelial permeability.

View Article and Find Full Text PDF

We previously reported that the vasoactive peptide 1 (P1, "SSWRRKRKESS") modulates the tension of pulmonary artery vessels through caveolar endothelial nitric oxide synthase (eNOS) activation in intact lung endothelial cells (ECs). Since PKC-α is a caveolae resident protein and caveolae play a critical role in the peptide internalization process, we determined whether modulation of caveolae and/or caveolar PKC-α phosphorylation regulates internalization of P1 in lung ECs. Cell monolayers were incubated in culture medium containing Rhodamine red-labeled P1 (100 μM) for 0-120 min.

View Article and Find Full Text PDF

Activated arginase has been implicated in many diseases including cancer, immune cell dysfunction, infections, and vascular disease. Enhanced arginase activity has been reported in lungs of patients with pulmonary artery hypertension. We used hypoxia as a model for pulmonary hypertension and studied the effect of exposure to hypoxia on arginase activity in human lung microvascular endothelial cells (HMVEC).

View Article and Find Full Text PDF

Arginase is an enzyme which converts arginine to ornithine and urea. Recently, arginase has been implicated in many physiological and pathological processes including vascular diseases. Inhibition of arginase activity by pharmacological inhibitors is a useful tool to study the biology of arginases and their possible role in therapy.

View Article and Find Full Text PDF

A high serum uric acid is common in subjects with pulmonary hypertension. The increase in serum uric acid may be a consequence of the local tissue ischemia and/or hypoxia, and it may also result from other factors independent of ischemia or hypoxia that occur in various forms of pulmonary hypertension. While classically viewed as a secondary phenomenon, recent studies suggest that hyperuricemia may also have a role in mediating the local vasoconstriction and vascular remodeling in the pulmonary vasculature.

View Article and Find Full Text PDF

Protein-protein interactions represent an important post-translational mechanism for endothelial nitric-oxide synthase (eNOS) regulation. We have previously reported that beta-actin is associated with eNOS oxygenase domain and that association of eNOS with beta-actin increases eNOS activity and nitric oxide (NO) production. In the present study, we found that beta-actin-induced increase in NO production was accompanied by decrease in superoxide formation.

View Article and Find Full Text PDF

We reported that an 11 amino acid synthetic peptide (P1) activates lung endothelial cell nitric oxide synthase (eNOS) independent of its change in expression and/or phosphorylation. Since caveolae/eNOS dissociation is known to enhance the catalytic activity of eNOS, we examined whether P1-mediated increase of eNOS activity is associated with caveolae/cholesterol modulation, increased caveolin-1 phosphorylation, and intracellular compartmentalization of eNOS in pulmonary artery endothelial cells (PAEC). PAEC were incubated with or without (control) P1 or cholesterol modulators/caveolae disruptors, cholesterol oxidase (CHOX) and methyl-beta-cyclodextrin (CD), for 1 h at 37 degrees C.

View Article and Find Full Text PDF

Primary graft dysfunction and rejection are common complications in lung transplant recipients. Increased expression of thioredoxin-1 (Trx), a 12-kDa redox-regulatory protein, has been reported in multiple lung pathophysiological conditions involving oxidative and inflammatory mediated injury including graft rejection in canine and rat models of lung transplantation. Our objective was to determine whether increased Trx expression is associated with progression of rejection pathophysiology in human lung transplant recipients.

View Article and Find Full Text PDF

Background: Lung graft dysfunction and rejection are significant causes of morbidity and mortality in transplant recipients. Thioredoxin-1, a redox-regulatory protein, functions as an antioxidant in multiple organs, including lungs. We examined whether priming of the donor lungs with thioredoxin-1 before transplantation attenuates acute lung injury.

View Article and Find Full Text PDF

Elevated levels of serum uric acid (UA) are commonly associated with primary pulmonary hypertension but have generally not been thought to have any causal role. Recent experimental studies, however, have suggested that UA may affect various vasoactive mediators. We therefore tested the hypothesis that UA might alter nitric oxide (NO) levels in pulmonary arterial endothelial cells (PAEC).

View Article and Find Full Text PDF

Beta-actin is traditionally considered a structural protein that organizes and maintains the shape of nonmuscle cells, although data now indicate that beta-actin is also a signaling molecule. beta-actin is directly associated with nitric oxide synthase type 3 (NOS-3) in endothelial cells and platelets, and this interaction increases NOS-3 activity and the affinity of NOS-3 for heat shock protein 90 kD (Hsp90). The beta-actin-induced increase in NOS-3 activity may be caused directly by beta-actin, the binding of Hsp90 to NOS-3, or both.

View Article and Find Full Text PDF

We recently reported that nitric oxide (NO) modulates expression of multiple genes associated with apoptotic pathways, including expression of caspase-8. The objective of the present study is to determine whether the NO-induced expression of the caspase-8 gene is regulated via signal transducers and activators of transcription-1 (STAT-1) signaling. The confluent monolayers of pulmonary artery endothelial cells (PAEC) were incubated with or without (control) 1 mM NOC-18, a NO donor, at 37 degrees C for 0-24 h.

View Article and Find Full Text PDF

Angiogenesis is a complex process involving endothelial cell migration, proliferation, and differentiation as well as tube formation. These processes are stimulated by a variety of growth factors such as vascular endothelial growth factor (VEGF). VEGF-induced cytoskeletal reorganization plays a crucial role in the angiogenic processes.

View Article and Find Full Text PDF

In this study, we developed an adenoviral vector harboring calpain-2 siRNA expression unit in which sense and anti-sense strands composing the siRNA duplex were connected by a loop and transcribed into a siRNA in porcine pulmonary artery endothelial cells (PAEC). We screened one efficient adenoviral vector Ad/si-m187 and found that Ad/si-m187 successfully exerted a gene knockdown effect on calpain-2 mRNA transcription and protein expression levels. The protein content of calpain-2 was reduced by 30%-80% in PAEC infected with Ad/si-m187 in comparison to a control adenoviral vector Ad/si-luc.

View Article and Find Full Text PDF

1. Myristoylated pseudosubstrate of PKCzeta (mPS) - a synthetic myristoylated peptide with a sequence (13 amino acids) mimicking the endogenous PKCzeta pseudosubstrate region -- is considered a selective cell-permeable inhibitor of PKCzeta. We present strong evidence that in endothelial cells the action of mPS is not limited to inhibition of PKC activity and that myristoylation of certain peptides can activate eNOS (endothelial nitric oxide synthase) through Akt phosphorylation.

View Article and Find Full Text PDF

Angiotensin IV (Ang IV)-stimulated cell proliferation is regulated through activation of multiple signaling modules in lung endothelial cells (EC). Because eukaryotic intitiation factor 4E (eIF4E) binding protein 1 (4EBP1) plays a critical role in the RNA translation and the regulation of cell growth, we examined whether Ang IV modulates expression and/or phosphorylation of eIF4E and 4EBP1 as well as the role of multiple signaling events associated with 4EBP1 phosphorylation in EC. Ang IV stimulation increased phosphorylation but not expression of eIF4E and 4EBP1 proteins.

View Article and Find Full Text PDF

The three isoforms of nitric oxide synthase (NOS)--endothelial NOS (eNOS), inducible NOS (iNOS), and neural NOS (nNOS)--colocalize with the cytoskeleton including actin microfilaments, microtubules, and intermediate filaments directly or indirectly. These colocalizations enable optimal nitric oxide production and help NOS exert their functions. The reorganization of cytoskeletal polymerization state induced by extracellular stimuli such as shear stress, hypoxia, and drugs regulates eNOS, nNOS, and iNOS.

View Article and Find Full Text PDF

The worldwide epidemic of metabolic syndrome correlates with an elevation in serum uric acid as well as a marked increase in total fructose intake (in the form of table sugar and high-fructose corn syrup). Fructose raises uric acid, and the latter inhibits nitric oxide bioavailability. Because insulin requires nitric oxide to stimulate glucose uptake, we hypothesized that fructose-induced hyperuricemia may have a pathogenic role in metabolic syndrome.

View Article and Find Full Text PDF

We previously reported association of eNOS with actin increases eNOS activity. In the present study, regulation of activity of eNOS by actin cytoskeleton during endothelial growth was studied. We found eNOS activity in PAEC increased when cells grew from preconfluence to confluence.

View Article and Find Full Text PDF

We reported that cigarette smoke extract (CSE) causes decreases in the activity and expression of endothelial nitric oxide synthase (eNOS) and calpain activity in pulmonary artery endothelial cells (PAECs). Calpains are a family of calcium-dependent endopeptidases, and their specific endogenous inhibitor is calpastatin. In this study, we evaluated the role of calpain-calpastatin in CSE-induced decrease in eNOS gene expression.

View Article and Find Full Text PDF

Background: Hyperuricemia has been linked to cardiovascular and renal diseases, possibly through the generation of reactive oxygen species (ROS) and subsequent endothelial dysfunction. The enzymatic effect of xanthine oxidase is the production of ROS and uric acid. Studies have shown that inhibiting xanthine oxidase with allopurinol can reverse endothelial dysfunction.

View Article and Find Full Text PDF

We have cloned and characterized the gene encoding the porcine cationic amino acid transporter, member 1 (CAT-1) (HGMW-approved gene symbol SLC7A1) from porcine pulmonary artery endothelial cells. The porcine SLC7A1 encodes 629 deduced amino acid residues showing a higher degree of sequence similarity with the human counterpart (91.1%) than with the rat (87.

View Article and Find Full Text PDF

Nitric oxide (NO) is a signal molecule involved in regulation of physiological and pathophysiological functions of the vascular endothelium such as apoptosis. We examined whether NO-modulates marker gene expression of signal transduction pathways in cultured pulmonary artery endothelial cell (PAEC). Cells were exposed to a NO donor, 1 mM NOC-18, for 0.

View Article and Find Full Text PDF

Persistent inhibition of cytochrome-c oxidase, a terminal enzyme of the mitochondrial electron transport chain, by excessive nitric oxide (NO) derived from inflammation, polluted air, and tobacco smoke contributes to enhanced oxidant production and programmed cell death or apoptosis of lung cells. We sought to determine whether the long-term exposure of pulmonary artery endothelial cells (PAEC) to pathophysiological concentrations of NO causes persistent inhibition of complex IV through redox modification of its key cysteine residues located in a putative NO-sensitive motif. Prolonged exposure of porcine PAEC to 1 mM 2,2'-(hydroxynitrosohydrazino)-bis-ethanamine (NOC-18; slow-releasing NO donor, equivalent to 1-5 microM NO) resulted in a gradual, persistent inhibition of complex IV concomitant with a reduction in ratios of mitochondrial GSH and GSSG.

View Article and Find Full Text PDF

Angiogenesis is an integral part of both the pulmonary inflammatory response to chronic exposure to cigarette smoke and the lung tissue remodeling associated with cigarette smoke-induced chronic obstructive pulmonary disease (COPD). To investigate the role of angiogenesis in the pathogenesis of COPD, we evaluated the effect of cigarette smoke extract (CSE) on angiogenesis of pulmonary artery endothelial cells (PAEC). Incubation of PAEC with 2.

View Article and Find Full Text PDF