Publications by authors named "Edward R Biehl"

The pathogenic mechanism(s) contributing to loss of dopamine neurons in Parkinson's disease (PD) remain obscure. Leucine-rich repeat kinase 2 (LRRK2) mutations are linked, as a causative gene, to PD. LRRK2 mutations are estimated to account for 10% of familial and between 1 % and 3 % of sporadic PD.

View Article and Find Full Text PDF

N-Phenyl-4-(6-phenylimidazo[2,1-b]thiazol-5-yl)thiazol-2-amines (6a-q) have been synthesized by the Hantzsch thiazole reaction of 2-chloro-1-(6-phenylimidazo[2,1-b]thiazol-5-yl)ethanones (4a-e) with suitably substituted thioureas using microwave heating. The ethanones (4a-e) were prepared by the reaction of 6-phenylimidazo[2,1-b]thiazoles (3a-e) with chloroacetylchloride in refluxing 1,4-dioxane whereas the thiazoles (3a-e) were synthesized by the reaction of 2-bromo-1-phenylethanones (2a-e) with thiazol-2-amine in refluxing acetone.

View Article and Find Full Text PDF

(Z)-5-(2-(1H-Indol-3-yl)-2-oxoethylidene)-3-phenyl-2-thioxothiazolidin-4-one (7a-q) derivatives have been synthesized by the condensation reaction of 3-phenyl-2-thioxothiazolidin-4-ones (3a-h) with suitably substituted 2-(1H-indol-3-yl)-2-oxoacetaldehyde (6a-d) under microwave condition. The thioxothiazolidine-4-ones were prepared from corresponding aromatic amines (1a-e) and di-(carboxymethyl)-trithiocarbonyl (2). The aldehydes (6a-h) were synthesized from the corresponding acidchlorides (5a-d) using HSnBu(3).

View Article and Find Full Text PDF

2-(Alkyl-1-yl)-1H-imidazol-5(4H)-ones 5a-n were synthesized via nucleophilic substitution of the methylsulfanyl group of the corresponding 2-(methylthio)-1H-imidazol-5(4H)-ones 3a-c with suitably substituted secondary amines. The starting 2-thioxo- imidazolidin-4-ones 2a,2b were prepared by condensation of thiohydantoin and benzo[b]-thiophene-3-carbaldehyde or benzofuran-3-carbaldehyde under microwave irracdiation (MW) conditions. 2-Methylthio derivatives 3a-c were prepared by treatment of 2a-b with methyl iodide in the presence of aqueous sodium hydroxide.

View Article and Find Full Text PDF

Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease and conditions such as ischemic stroke affect millions of individuals annually and exert an enormous financial burden on society. A hallmark of these conditions is the abnormal loss of neurons. Currently, there are no effective strategies to prevent neuronal death in these pathologies.

View Article and Find Full Text PDF

Use of isolated carbonyl reductases in the reduction of aromatic beta-ketonitriles have completely eliminated the competing alpha-ethylation, which is often observed with whole cell biocatalysts. By choosing suitable recombinant carbonyl reductase, the reduction of beta-ketonitriles afforded (R)- or (S)-beta-hydroxy nitriles with excellent optical purity and yield. Subsequently, nitrilase-catalyzed hydrolysis of the obtained optically pure beta-hydroxy nitriles led to the corresponding beta-hydroxy carboxylic acids in high yields.

View Article and Find Full Text PDF

Neurodegenerative diseases are a major health problem particularly among the elderly. Drugs to prevent or slow down the death of neurons are urgently needed but are currently unavailable. We previously reported that the c-Raf inhibitor, GW5074 {5-iodo-3-[(3',5'-dibromo-4'-hydroxyphenyl) methylene]-2-indolinone}, is protective in tissue culture and in vivo paradigms of neurodegeneration.

View Article and Find Full Text PDF

Both antipodes of 2-azido-1-arylethanols were synthesized with excellent optical purity via enzymatic reduction of the corresponding alpha-azidoacetophenone derivatives catalyzed by a recombinant carbonyl reductase from Candida magnoliae ( CMCR) or an alcohol dehydrogenase from Saccharomyces cerevisiae ( Ymr226c). This provides an effective route to this class of important compounds in optically pure form. ( S)-2-Azido-1-( p-chlorophenyl)ethanols reacted with alkynes employing click chemistry to afford high yields of optically pure triazole-containing beta-adrenergic receptor blocker analogues with potential biological activity.

View Article and Find Full Text PDF

Although an X-ray model sequence of a leucine dehydrogenase from Bacillus sphaericus ATCC4525 was reported, the amino acid sequence of this enzyme has not been confirmed. In the current study, this leucine dehydrogenase gene was cloned, sequenced, and over-expressed in Escherichia coli, and the protein sequence has been clarified. This leucine dehydrogenase is not identical with that of B.

View Article and Find Full Text PDF

A nitrilase gene blr3397 from Bradyrhizobium japonicum USDA110 was cloned and over-expressed in Escherichia coli, and the encoded protein was purified to give a nitrilase with a single band of about 34.5kD on SDS-PAGE. The molecular weight of the holoenzyme was about 340kD as determined by light scattering analysis, suggesting that nitrilase blr3397 self-aggregated to an active form with the native structure being a decamer.

View Article and Find Full Text PDF

Alpha-ethylation is concomitant with the reduction of aromatic beta-ketonitriles catalyzed by whole-cell biocatalysts. Use of isolated carbonyl reductase has completely eliminated this competing reaction. (R)-beta-Hydroxy nitriles were obtained via a reduction catalyzed by a recombinant carbonyl reductase with excellent optical purity and were further converted to (R)-beta-hydroxy carboxylic acids via a nitrilase-catalyzed hydrolysis.

View Article and Find Full Text PDF

A mandelonitrile hydrolase bll6402 from Bradyrhizobium japonicum USDA110 was predicted by rational genome mining, i.e. combining traditional genome mining with functional analysis of the genetic organization of the putative nitrilase gene within the chromosome of microorganisms.

View Article and Find Full Text PDF

Biocatalytic enantioselective hydrolysis of beta-hydroxy nitriles to corresponding (S)-enriched beta-hydroxy carboxylic acids has been achieved for the first time by an isolated nitrilase bll6402 from Bradyrhizobium japonicum USDA110. This offers a new "green" approach to optically pure beta-hydroxy nitriles and beta-hydroxy carboxylic acids. The observed remote stereorecognition is surprising because this nitrilase shows no enantioselectivity for the hydrolysis of alpha-hydroxy nitriles such as mandelonitrile.

View Article and Find Full Text PDF

Mutations in palmitoyl protein thioesterase-1 (PPT1) have been found to cause the infantile form of neuronal ceroid lipofuscinosis, which is a lysosomal storage disorder characterized by impaired degradation of fatty acid-modified proteins with accumulation of amorphous granular deposits in cortical neurons, leading to mental retardation and death. Palmitoyl protein thioesterase-2 (PPT2) is a second lysosomal hydrolase that shares a 26% identity with PPT1. A previous study had suggested that palmitoyl-CoA was the preferred substrate of PPT2.

View Article and Find Full Text PDF