Introduction: Exposure to harmful aerosols is of increasing public health concern due to the SARS-CoV-2 pandemic and wildland fires. These events have prompted risk reduction behaviors, notably the use of disposable respiratory protection. This project investigated whether craniofacial morphology impacts the efficiency of disposable masks (N95, KN95, surgical masks, KF94) most often worn by the public to protect against toxic and infectious aerosols.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
July 2024
Background & Objective: Disposable face masks are a primary protective measure against the adverse health effects of exposure to infectious and toxic aerosols such as airborne viruses and particulate air pollutants. While the fit of high efficiency respirators is regulated in occupational settings, relatively little is known about the fitted filtration efficiencies of ear loop style face masks worn by the public.
Methods: We measured the variation in fitted filtration efficiency (FFE) of four commonly worn disposable face masks, in a cohort of healthy adult participants (N = 100, 50% female, 50% male, average age = 32.
We and others discovered a highly-conserved mitochondrial transmembrane microprotein, named Mitoregulin (Mtln), that supports lipid metabolism. We reported that Mtln strongly binds cardiolipin (CL), increases mitochondrial respiration and Ca retention capacities, and reduces reactive oxygen species (ROS). Here we extend our observation of Mtln-CL binding and examine Mtln influence on cristae structure and mitochondrial membrane integrity during stress.
View Article and Find Full Text PDFIntracellular redox homeostasis in the airway epithelium is closely regulated through adaptive signaling and metabolic pathways. However, inhalational exposure to xenobiotic stressors such as secondary organic aerosols (SOA) can alter intracellular redox homeostasis. Isoprene hydroxy hydroperoxide (ISOPOOH), a ubiquitous volatile organic compound derived from the atmospheric photooxidation of biogenic isoprene, is a major contributor to SOA.
View Article and Find Full Text PDFBackground: Docosahexaenoic acid (DHA) controls the biophysical organization of plasma membrane sphingolipid/cholesterol-enriched lipid rafts to exert anti-inflammatory effects, particularly in lymphocytes. However, the impact of DHA on the spatial arrangement of alveolar macrophage lipid rafts and inflammation is unknown.
Objectives: The primary objective was to determine how DHA controls lipid raft organization and function of alveolar macrophages.
While redox processes play a vital role in maintaining intracellular homeostasis by regulating critical signaling and metabolic pathways, supra-physiological or sustained oxidative stress can lead to adverse responses or cytotoxicity. Inhalation of ambient air pollutants such as particulate matter and secondary organic aerosols (SOA) induces oxidative stress in the respiratory tract through mechanisms that remain poorly understood. We investigated the effect of isoprene hydroxy hydroperoxide (ISOPOOH), an atmospheric oxidation product of vegetation-derived isoprene and a constituent of SOA, on intracellular redox homeostasis in cultured human airway epithelial cells (HAEC).
View Article and Find Full Text PDFLong-chain polyunsaturated fatty acids (PUFAs) are prone to nonenzymatic oxidation in response to differing environmental stressors and endogenous cellular sources. There is increasing evidence that phospholipids containing oxidized PUFA acyl chains control the inflammatory response. However, the underlying mechanism(s) of action by which oxidized PUFAs exert their functional effects remain unclear.
View Article and Find Full Text PDFProhibitins (PHB1 and PHB2) are ubiquitously expressed proteins which play critical roles in multiple biological processes, and together form the ring-like PHB complex found in phospholipid-rich cellular compartments including lipid rafts. Recent studies have implicated PHB1 as a mediator of fatty acid transport as well as a membrane scaffold mediating B lymphocyte and mast cell signal transduction. However, the specific role of PHBs in the macrophage have not been characterized, including their role in fatty acid uptake and lipid raft-mediated inflammatory signaling.
View Article and Find Full Text PDFIntroduction: Fitted filtration performance of an N95 respirator may benefit from differing levels of instructions.
Methods: Using a modified Occupational Safety and Health Administration fit test protocol, we measured fitted filtration efficiency for an N95 respirator in 21 screened, healthy participants given 4 levels of escalating instruction: (1) uninstructed (baseline), (2) written/pictorial manufacturer instructions, (3) step-by-step video demonstration, and (4) staff instruction (visual inspection of respirator fit and verbal suggestions to adjust when applicable).
Results: Baseline fitted filtration efficiency was not significantly different between participants with or without previous experience of N95 use.
The effects of radiation retinopathy on the retinal vasculature have been well established; however, the literature describing the pathologic changes in the choriocapillaris is relatively lacking. In this report, we describe the histologic findings of a donor eye with a choroidal melanoma with special attention to the choriocapillaris. Clinical and histological findings, including immunohistochemistry and transmission electron microscopy, are described for the retina and choroid of a donor eye affected by radiation retinopathy secondary to treatment of choroidal melanoma.
View Article and Find Full Text PDFExposure to respirable air particulate matter (PM) in ambient air is associated with morbidity and premature deaths. A major source of PM is the photooxidation of volatile plant-produced organic compounds such as isoprene. Photochemical oxidation of isoprene leads to the formation of hydroperoxides, environmental oxidants that lead to inflammatory (IL-8) and adaptive (HMOX1) gene expression in human airway epithelial cells (HAEC).
View Article and Find Full Text PDFPurpose: The objective of this study was to examine feasibility of single- or hypo-fraction of high-dose-rate (HDR) electronic brachytherapy (eBT) in uveal melanoma treatment.
Material And Methods: Biologically effective doses (BED) of organs at risk (OARs) were compared to those of iodine-125-based eye plaque low-dose-rate brachytherapy (I LDR-BT) with vitreous replacement (VR). Single- or hypo-fractionated equivalent physical doses (SFEDs or HFEDs) for tumor were calculated from tumor BED of I LDR-BT using linear-quadratic (LQ) and universal survival curve (USC) models.
Purpose: To determine if the gamma knife icon (GKI) can provide superior stereotactic radiotherapy (SRT) dose distributions for appropriately selected meningioma and post-resection brain tumor bed treatments to volumetric modulated arc therapy (VMAT).
Materials And Methods: Appropriately selected targets were not proximal to great vessels, did not have sensitive soft tissue including organs-at-risk (OARs) within the planning target volume (PTV), and did not have concave tumors containing excessive normal brain tissue. Four of fourteen candidate meningioma patients and six of six candidate patients with brain tumor cavities were considered for this treatment planning comparison study.
Mitochondrial dysfunction contributes to cardiac pathologies. Barriers to new therapies include an incomplete understanding of underlying molecular culprits and a lack of effective mitochondria-targeted medicines. Here, we test the hypothesis that the cardiolipin-binding peptide elamipretide, a clinical-stage compound under investigation for diseases of mitochondrial dysfunction, mitigates impairments in mitochondrial structure-function observed after rat cardiac ischemia-reperfusion.
View Article and Find Full Text PDFMetallic compounds contribute to the oxidative stress of ambient particulate matter (PM) exposure. The toxicity of redox inert ions of cadmium, mercury, lead and zinc, as well as redox-active ions of vanadium and chromium is underlain by dysregulation of mitochondrial function and loss of signaling quiescence. Central to the initiation of these effects is the interaction of metal ions with cysteinyl thiols on glutathione and key regulatory proteins, which leads to impaired mitochondrial electron transport and persistent pan-activation of signal transduction pathways.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
July 2019
Cardiolipin (CL) is a key phospholipid of the mitochondria. A loss of CL content and remodeling of CL's acyl chains is observed in several pathologies. Strong shifts in CL concentration and acyl chain composition would presumably disrupt mitochondrial inner membrane biophysical organization.
View Article and Find Full Text PDFPurpose: The number of studies that evaluate treatment margins for high grade gliomas (HGG) are limited. We hypothesize that patients with HGG who are treated with a gross tumor volume (GTV) to planning tumor volume (PTV) expansion of ≤1 cm will have progression-free survival (PFS) and overall survival (OS) rates similar to those treated in accordance with standard protocols by the Radiation Therapy Oncology Group or European Organisation for Research and Treatment of Cancer. Furthermore, the PFS and OS of subgroups within the study population will have equivalent survival outcomes with GTV1-to-PTV1 margins of 1.
View Article and Find Full Text PDFCardiolipin (CL) is an anionic phospholipid mainly located in the inner mitochondrial membrane, where it helps regulate bioenergetics, membrane structure, and apoptosis. Localized, phase-segregated domains of CL are hypothesized to control mitochondrial inner membrane organization. However, the existence and underlying mechanisms regulating these mitochondrial domains are unclear.
View Article and Find Full Text PDFMitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
October 2018
Docosahexaenoic acid (DHA, 22:6) is an n-3 polyunsaturated fatty acid (n-3 PUFA) that influences immunological, metabolic, and neurological responses through complex mechanisms. One structural mechanism by which DHA exerts its biological effects is through its ability to modify the physical organization of plasma membrane signaling assemblies known as sphingomyelin/cholesterol (SM/chol)-enriched lipid rafts. Here we studied how DHA acyl chains esterified in the sn-2 position of phosphatidylcholine (PC) regulate the formation of raft and non-raft domains in mixtures with SM and chol on differing size scales.
View Article and Find Full Text PDFCardiac mitochondrial phospholipid acyl chains regulate respiratory enzymatic activity. In several diseases, the rodent cardiac phospholipidome is extensively rearranged; however, whether specific acyl chains impair respiratory enzyme function is unknown. One unique remodeling event in the myocardium of obese and diabetic rodents is an increase in docosahexaenoic acid (DHA) levels.
View Article and Find Full Text PDFMenopause results in a progressive decline in 17β-estradiol (E2) levels, increased adiposity, decreased insulin sensitivity, and a higher risk for type 2 diabetes. Estrogen therapies can help reverse these effects, but the mechanism(s) by which E2 modulates susceptibility to metabolic disease is not well understood. In young C57BL/6N mice, short-term ovariectomy decreased-whereas E2 therapy restored-mitochondrial respiratory function, cellular redox state (GSH/GSSG), and insulin sensitivity in skeletal muscle.
View Article and Find Full Text PDFCardiolipin (CL) has a critical role in maintaining mitochondrial inner membrane structure. In several conditions such as heart failure and aging, there is loss of CL content and remodeling of CL acyl chains, which are hypothesized to impair mitochondrial inner membrane biophysical organization. Therefore, this study discriminated how CL content and acyl chain composition influenced select properties of simple and complex mitochondrial mimicking model membranes.
View Article and Find Full Text PDFThe objective of this work is to present commissioning procedures to clinically implement a three-dimensional (3D), image-based, treatment-planning system (TPS) for high-dose-rate (HDR) brachytherapy (BT) for gynecological (GYN) cancer. The physical dimensions of the GYN applicators and their values in the virtual applicator library were varied by 0.4 mm of their nominal values.
View Article and Find Full Text PDF