Publications by authors named "Edward O'Brien"

Single-molecule force spectroscopy (SMFS) experiments can monitor protein refolding by applying a small force of a few piconewtons (pN) and slowing down the folding process. Bell theory predicts that in the narrow force regime where refolding can occur, the folding time should increase exponentially with increased external force. In this work, using coarse-grained molecular dynamics simulations, we compared the refolding pathways of SARS-CoV-1 RBD and SARS-CoV-2 RBD (RBD refers to the receptor binding domain) starting from unfolded conformations with and without a force applied to the protein termini.

View Article and Find Full Text PDF

A novel class of protein misfolding characterized by either the formation of non-native noncovalent lasso entanglements in the misfolded structure or loss of native entanglements has been predicted to exist and found circumstantial support through biochemical assays and limited-proteolysis mass spectrometry data. Here, we examine whether it is possible to design small molecule compounds that can bind to specific folding intermediates and thereby avoid these misfolded states in computer simulations under idealized conditions (perfect drug-binding specificity, zero promiscuity, and a smooth energy landscape). Studying two proteins, type III chloramphenicol acetyltransferase (CAT-III) and D-alanyl-D-alanine ligase B (DDLB), that were previously suggested to form soluble misfolded states through a mechanism involving a failure-to-form of native entanglements, we explore two different drug design strategies using coarse-grained structure-based models.

View Article and Find Full Text PDF

Synonymous mutations in messenger RNAs (mRNAs) can reduce protein-protein binding substantially without changing the protein's amino acid sequence. Here, we use coarse-grain simulations of protein synthesis, post-translational dynamics, and dimerization to understand how synonymous mutations can influence the dimerization of two E. coli homodimers, oligoribonuclease and ribonuclease T.

View Article and Find Full Text PDF

The binding of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein to the host cell receptor angiotensin-converting enzyme 2 (ACE2) is the first step in human viral infection. Therefore, understanding the mechanism of interaction between RBD and ACE2 at the molecular level is critical for the prevention of COVID-19, as more variants of concern, such as Omicron, appear. Recently, atomic force microscopy has been applied to characterize the free energy landscape of the RBD-ACE2 complex, including estimation of the distance between the transition state and the bound state, xu.

View Article and Find Full Text PDF

One-third of protein domains in the CATH database contain a recently discovered tertiary topological motif: non-covalent lasso entanglements, in which a segment of the protein backbone forms a loop closed by non-covalent interactions between residues and is threaded one or more times by the N- or C-terminal backbone segment. Unknown is how frequently this structural motif appears across the proteomes of organisms. And the correlation of these motifs with various classes of protein function and biological processes have not been quantified.

View Article and Find Full Text PDF

Background: Synonymous mutations, which change the DNA sequence but not the encoded protein sequence, can affect protein structure and function, mRNA maturation, and mRNA half-lives. The possibility that synonymous mutations might be enriched in cancer has been explored in several recent studies. However, none of these studies control for all three types of mutational heterogeneity (patient, histology, and gene) that are known to affect the accurate identification of non-synonymous cancer-associated genes.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure in intensive care units that has increased dramatically as a result of the COVID-19 pandemic. In both COVID-19 and non-COVID ARDS, the pathogenesis of lung injury involves local (pulmonary) and systemic inflammation, leading to impaired gas exchange, requirement for mechanical ventilation, and a high risk of mortality. Heat shock protein 27 (HSP27) is a chaperone protein expressed in times of cell stress with roles in modulation of systemic inflammation via the NF-κB pathway.

View Article and Find Full Text PDF

Background: Point-of-care ultrasound (POCUS) can aid geriatricians in caring for complex, older patients. Currently, there is limited literature on POCUS use by geriatricians. We conducted a national survey to assess current POCUS use, training desired, and barriers among Geriatrics and Extended Care ("geriatric") clinics at Veterans Affairs Medical Centers (VAMCs).

View Article and Find Full Text PDF

Subpopulations of soluble, misfolded proteins can bypass chaperones within cells. The extent of this phenomenon and how it happens at the molecular level are unknown. Through a meta-analysis of the experimental literature we find that in all quantitative protein refolding studies there is always a subpopulation of soluble but misfolded protein that does not fold in the presence of one or more chaperones, and can take days or longer to do so.

View Article and Find Full Text PDF

The folding of proteins into their native conformation is a complex process that has been extensively studied over the past half-century. The ribosome, the molecular machine responsible for protein synthesis, is known to interact with nascent proteins, adding further complexity to the protein folding landscape. Consequently, it is unclear whether the folding pathways of proteins are conserved on and off the ribosome.

View Article and Find Full Text PDF

Background: Epidemiological evidence on the health risks of sulfur dioxide () is more limited compared with other pollutants, and doubts remain on several aspects, such as the form of the exposure-response relationship, the potential role of copollutants, as well as the actual risk at low concentrations and possible temporal variation in risks.

Objectives: Our aim was to assess the short-term association between exposure to and daily mortality in a large multilocation data set, using advanced study designs and statistical techniques.

Methods: The analysis included 43,729,018 deaths that occurred in 399 cities within 23 countries between 1980 and 2018.

View Article and Find Full Text PDF

Background: More primary care providers (PCPs) have begun to embrace the use of point-of-care ultrasound (POCUS), but little is known about how PCPs are currently using POCUS and what barriers exist. In this prospective study, the largest systematic survey of POCUS use among PCPs, we assessed the current use, barriers to use, program management, and training needs for POCUS in primary care.

Methods: We conducted a prospective observational study of all VA Medical Centers (VAMCs) between June 2019 and March 2020 using a web-based survey sent to all VAMC Chiefs of Staff and Chiefs of primary care clinics (PCCs).

View Article and Find Full Text PDF

The specific activity of enzymes can be altered over long timescales in cells by synonymous mutations that alter a messenger RNA molecule's sequence but not the encoded protein's primary structure. How this happens at the molecular level is unknown. Here, we use multiscale modelling of three Escherichia coli enzymes (type III chloramphenicol acetyltransferase, D-alanine-D-alanine ligase B and dihydrofolate reductase) to understand experimentally measured changes in specific activity due to synonymous mutations.

View Article and Find Full Text PDF

Conventional quantum mechanical-molecular mechanics (QM/MM) simulation approaches for modeling enzyme reactions often assume that there is one dominant reaction pathway and that this pathway can be sampled starting from an X-ray structure of the enzyme. These assumptions reduce computational cost; however, their validity has not been extensively tested. This is due in part to the lack of a rigorous formalism for integrating disparate pathway information from dynamical QM/MM calculations.

View Article and Find Full Text PDF

Accurate and efficient folding of nascent protein sequences into their native states requires support from the protein homeostasis network. Herein we probe which newly translated proteins are thermo-sensitive, making them susceptible to misfolding and aggregation under heat stress using pulse-SILAC mass spectrometry. We find a distinct group of proteins that is highly sensitive to this perturbation when newly synthesized but not once matured.

View Article and Find Full Text PDF

Background: Point-of-care ultrasound (POCUS) can reduce procedural complications and improve the diagnostic accuracy of hospitalists. Currently, it is unknown how many practicing hospitalists use POCUS, which applications are used most often, and what barriers to POCUS use exist.

Objective: This study aimed to characterize current POCUS use, training needs, and barriers to use among hospital medicine groups (HMGs).

View Article and Find Full Text PDF

Some misfolded protein conformations can bypass proteostasis machinery and remain soluble in vivo. This is an unexpected observation, as cellular quality control mechanisms should remove misfolded proteins. Three questions, then, are: how do long-lived, soluble, misfolded proteins bypass proteostasis? How widespread are such misfolded states? And how long do they persist? We address these questions using coarse-grain molecular dynamics simulations of the synthesis, termination, and post-translational dynamics of a representative set of cytosolic E.

View Article and Find Full Text PDF

A promising approach to combat Covid-19 infections is the development of effective antiviral antibodies that target the SARS-CoV-2 spike protein. Understanding the structures and molecular mechanisms underlying the binding of antibodies to SARS-CoV-2 can contribute to quickly achieving this goal. Recently, a cocktail of REGN10987 and REGN10933 antibodies was shown to be an excellent candidate for the treatment of Covid-19.

View Article and Find Full Text PDF

A genetic knockout can be lethal to one human cell type while increasing growth rate in another. This context specificity confounds genetic analysis and prevents reproducible genome engineering. Genome-wide CRISPR compendia across most common human cell lines offer the largest opportunity to understand the biology of cell specificity.

View Article and Find Full Text PDF

Spatially fractionated radiotherapy has been shown to have effects on the immune system that differ from conventional radiotherapy (CRT). We compared several aspects of the immune response to CRT relative to a model of spatially fractionated radiotherapy (RT), termed microplanar radiotherapy (MRT). MRT delivers hundreds of grays of radiation in submillimeter beams (peak), separated by non-radiated volumes (valley).

View Article and Find Full Text PDF

The presence of a single cluster of nonoptimal codons was found to decrease a transcript's half-life through the interaction of the ribosome-associated quality control machinery with stalled ribosomes in The impact of multiple nonoptimal codon clusters on a transcript's half-life, however, is unknown. Using a kinetic model, we predict that inserting a second nonoptimal cluster near the 5' end can lead to synergistic effects that increase a messenger RNA's (mRNA's) half-life in Specifically, the 5' end cluster suppresses the formation of ribosome queues, reducing the interaction of ribosome-associated quality control factors with stalled ribosomes. We experimentally validate this prediction by introducing two nonoptimal clusters into three different genes and find that their mRNA half-life increases up to fourfold.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic data can help tailor treatments to individual patients, particularly through identifying mutations that respond to specific therapies.
  • A new resampling method was developed for comparing gene pair selections, which was tested on the ALK variant in melanoma, initially believed to predict sensitivity to ALK inhibitors.
  • The findings show that ALK isn't mutually exclusive with critical melanoma oncogenes and doesn't indicate sufficient cancer growth or responsiveness to treatment, challenging its role as a target for therapy.
View Article and Find Full Text PDF

Interactions between the ribosome and nascent chain can destabilize folded domains in the ribosome exit tunnel's vestibule, the last 3 nm of the exit tunnel where tertiary folding can occur. Here, we test if a contribution to this destabilization is a weakening of hydrophobic association, the driving force for protein folding. Using all-atom molecular dynamics simulations, we calculate the potential-of-mean force between two methane molecules along the center line of the ribosome exit tunnel and in bulk solution.

View Article and Find Full Text PDF