Motivation: Multi-trait analysis has been shown to have greater statistical power than single-trait analysis. Most of the existing multi-trait analysis methods only work with a limited number of traits and usually prioritize high statistical power over identifying relevant traits, which heavily rely on domain knowledge.
Results: To handle diseases and traits with obscure etiology, we developed TraitScan, a powerful and fast algorithm that identifies potential pleiotropic traits from a moderate or large number of traits (e.
We present new subset scan methods for multivariate event detection in massive space-time datasets. We extend the recently proposed 'fast subset scan' framework from univariate to multivariate data, enabling computationally efficient detection of irregular space-time clusters even when the numbers of spatial locations and data streams are large. For two variants of the multivariate subset scan, we demonstrate that the scan statistic can be efficiently optimized over proximity-constrained subsets of locations and over all subsets of the monitored data streams, enabling timely detection of emerging events and accurate characterization of the affected locations and streams.
View Article and Find Full Text PDF