Rock, concrete, and other engineered materials are often composed of several minerals that change volumetrically in response to variations in the moisture content of the local environment. Such differential shrinkage is caused by varying shrinkage rates between mineral compositions during dehydration. Using both 3D X-ray imaging of geo-architected samples and peridynamic (PD) numerical simulations, we show that the spatial distribution of the clay affects the crack network geometry with distributed clay particles yielding the most complex crack networks and percent damage (99.
View Article and Find Full Text PDFQuantitative understanding of uranium transport by high temperature fluids is crucial for confident assessment of its migration in a number of natural and artificially induced contexts, such as hydrothermal uranium ore deposits and nuclear waste stored in geological repositories. An additional recent and atypical context would be the seawater inundated fuel of the Fukushima Daiichi Nuclear Power Plant. Given its wide applicability, understanding uranium transport will be useful regardless of whether nuclear power finds increased or decreased adoption in the future.
View Article and Find Full Text PDFMolecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix.
View Article and Find Full Text PDF