During early 2021, Peru had the highest COVID-19-associated per-capita mortality rate. Socioeconomic inequality, insufficiently prepared healthcare, and surveillance systems are factors explaining the mortality rate, which can be severely worsened by early undetected SARS-CoV-2 circulation. We tested 1,441 individuals with fever sampled during August 2019-May 2021, several months before the first SARS-CoV-2 seroprevalence study available so far in Lima, Peru, for SARS-CoV-2-specific antibodies.
View Article and Find Full Text PDFFort Sherman virus (FSV) was isolated in Panama in 1985 from a US soldier. We report a case of human FSV infection in a febrile patient from northern coastal Peru in 2020. FSV infections spanning ≈35 years and a distance of 2,000 km warrant diagnostics, genomic surveillance, and investigation of transmission cycles.
View Article and Find Full Text PDFPeru's holds the highest COVID death rate per capita worldwide. Key to this outcome is the lack of robust, rapid, and accurate molecular tests to circumvent the elevated costs and logistics of SARS-CoV-2 detection via RT-qPCR. To facilitate massive and timely COVID-19 testing in rural and socioeconomically deprived contexts, we implemented and validated RCSMS, a rapid and sensitive CRISPR-Cas12a test for the molecular detection of SARS-CoV-2 from saliva.
View Article and Find Full Text PDFIn this study, the authors compared the efficiency of automated robotic and manual injection methods for the CRISPR-RfxCas13d (CasRx) system for mRNA knockdown and Cas9-mediated DNA targeting in zebrafish embryos. They targeted the no tail () gene as a proof-of-principle, evaluating the induced embryonic phenotypes. Both Cas9 and CasRx systems caused loss of function phenotypes for .
View Article and Find Full Text PDFEarly embryonic development is driven exclusively by maternal gene products deposited into the oocyte. Although critical in establishing early developmental programs, maternal gene functions have remained elusive due to a paucity of techniques for their systematic disruption and assessment. CRISPR-Cas13 systems have recently been employed to degrade RNA in yeast, plants, and mammalian cell lines.
View Article and Find Full Text PDFPrions and Amyloid beta (Aβ) peptides induce synaptic damage via complex mechanisms that include the pathological alteration of intracellular signaling cascades. The host-encoded cellular prion protein (PrP) acts as a high-affinity cell surface receptor for both toxic species and it can modulate the endocytic trafficking of the N-methyl D-aspartate (NMDA) receptor and E-cadherin adhesive complexes via Src family kinases (SFKs). Interestingly, SFK-mediated control of endocytosis is a widespread mechanism used to regulate the activity of important transmembrane proteins, including neuroreceptors for major excitatory and inhibitory neurotransmitters.
View Article and Find Full Text PDFBackground: Prions and amyloid-β (Aβ) oligomers trigger neurodegeneration by hijacking a poorly understood cellular signal mediated by the prion protein (PrP) at the plasma membrane. In early zebrafish embryos, PrP-1-dependent signals control cell-cell adhesion via a tyrosine phosphorylation-dependent mechanism.
Results: Here we report that the Src family kinases (SFKs) Fyn and Yes act downstream of PrP-1 to prevent the endocytosis and degradation of E-cadherin/β-catenin adhesion complexes in vivo.
The ability of the cellular prion protein (PrP(C)) to trigger intracellular signals appears central to neurodegeneration pathways, yet the physiological significance of such signals is rather puzzling. For instance, PrP(C) deregulation disrupts phenomena as diverse as synaptic transmission in mammals and cell adhesion in zebrafish. Although unrelated, the key proteins in these events -the NMDA receptor (NMDAR) and E-cadherin, respectively- are similarly modulated by the Src family kinase (SFK) Fyn.
View Article and Find Full Text PDFBackground: As a consequence of gene/genome duplication, the RTN4/Nogo gene has two counterparts in zebrafish: rtn4a and rtn4b. The shared presence of four specific amino acid motifs-M1 to M4-in the N-terminal region of mammalian RTN4, and zebrafish Rtn4b suggests that Rtn4b is the closest homologue of mammalian Nogo-A.
Results: To explore their combined roles in zebrafish development, we characterized the expression patterns of rtn4a and rtn4b in a comparative manner and performed morpholino-mediated knockdowns.
Unlike mammals, fish are able to regenerate axons in their central nervous system. This difference has been partly attributed to the loss/acquisition of inhibitory proteins during evolution. Nogo-A--the longest isoform of the reticulon4 (rtn4) gene product--is commonly found in mammalian myelin where it acts as a potent inhibitor of axonal regeneration.
View Article and Find Full Text PDFTransmissible spongiform encephalopathies (TSEs), otherwise known as prion disorders, are fatal diseases causing neurodegeneration in a wide range of mammalian hosts, including humans. The causative agents - prions - are thought to be composed of a rogue isoform of the endogenous prion protein (PrP). Beyond these and other basic concepts, fundamental questions in prion biology remain unanswered, such as the physiological function of PrP, the molecular mechanisms underlying prion pathogenesis, and the origin of prions.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
June 2010
The prion protein (PrP) has been implicated in many diverse functions, making it difficult to pinpoint its basic physiological role. Our most recent studies in zebrafish, mammalian and invertebrate cells indicate that PrP regulates cell-cell communication, as well cell-matrix interactions at focal adhesions. In addition, we previously have shown that upon antibody-mediated cross-linking, PrP can be induced to cluster in the preformed T-cell cap.
View Article and Find Full Text PDFThe best-known attribute of the prion protein (PrP) is its tendency to misfold into a rogue isoform. Much less understood is how this misfolded isoform causes deadly brain illnesses. Neurodegeneration in prion disease is often seen as a consequence of abnormal PrP function yet, amazingly little is known about the normal, physiological role of PrP.
View Article and Find Full Text PDFThe reggies/flotillins--proteins upregulated during axon regeneration in retinal ganglion cells (RGCs)--are scaffolding proteins of microdomains and involved in neuronal differentiation. Here, we show that reggies regulate axon regeneration in zebrafish (ZF) after optic nerve section (ONS) in vivo as well as axon/neurite extension in hippocampal and N2a neurons in vitro through signal transduction molecules modulating actin dynamics. ZF reggie-1a, -2a, and -2b downregulation by reggie-specific morpholino (Mo) antisense oligonucleotides directly after ONS significantly reduced ZF RGC axon regeneration: RGC axons from reggie Mo retinas were markedly reduced.
View Article and Find Full Text PDFPrion proteins (PrPs) are key players in fatal neurodegenerative disorders, yet their physiological functions remain unclear, as PrP knockout mice develop rather normally. We report a strong PrP loss-of-function phenotype in zebrafish embryos, characterized by the loss of embryonic cell adhesion and arrested gastrulation. Zebrafish and mouse PrP mRNAs can partially rescue this knockdown phenotype, indicating conserved PrP functions.
View Article and Find Full Text PDFThy-1 is a developmentally regulated, immunoglobulin superfamily member (IgSF), glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein expressed most strongly in neurons and lymphocytes. Thy-1 is expressed in all vertebrates and has been implicated in a variety of processes, including axon regeneration and transmembrane signaling, but its specific function remains elusive. A Thy-1-like molecule in teleost fish was recently identified, with evidence for its role in lipid-raft based signal transduction linked to optic nerve regeneration.
View Article and Find Full Text PDFReggie-1 and -2 proteins (flotillin-2 and -1 respectively) form their own type of non-caveolar membrane microdomains, which are involved in important cellular processes such as T-cell activation, phagocytosis and signalling mediated by the cellular prion protein and insulin; this is consistent with the notion that reggie microdomains promote protein assemblies and signalling. While it is generally known that membrane microdomains contain large multiprotein assemblies, the exact organization of reggie microdomains remains elusive. Using chemical cross-linking approaches, we have demonstrated that reggie complexes are composed of homo- and hetero-tetramers of reggie-1 and -2.
View Article and Find Full Text PDFPrions result from the misfolding and selective accumulation of the host-encoded prion protein (PrP) in the brain. Despite intensive research on mammalian models, basic questions about the biological role of PrP and the evolutionary origin of prion disease remain unanswered. Following our previous identification of novel fish PrP homologues, here we generated new fish PrP sequences and performed genomic analysis to demonstrate the existence of two homologous PrP loci in bony fish, which display extensive molecular variation and are highly expressed in adult and developing fish brains.
View Article and Find Full Text PDFReggies are plasma membrane-associated proteins and characteristic markers of lipid-raft microdomains. They are highly conserved from flies to humans and have been implicated in axon regeneration and cell process and contact formation, possibly providing functional platforms for cell-signaling in neurons and other cell types. We analyzed reggie mRNA and protein expression patterns during early zebrafish development.
View Article and Find Full Text PDFThe complete nucleotide sequence (16,650 bp) of the mitochondrial genome of the salamander Mertensiella luschani (Caudata, Amphibia) was determined. This molecule conforms to the consensus vertebrate mitochondrial gene order. However, it is characterized by a long non-coding intervening sequence with two 124-bp repeats between the tRNA(Thr) and tRNA(Pro) genes.
View Article and Find Full Text PDFInfectious prion proteins cause neurodegenerative disease in mammals owing to the acquisition of an aberrant conformation. We cloned a Fugu rubripes gene that encodes a structurally conserved prion protein, and found rapid rates of molecular divergence among prions from different vertebrate classes, along with molecular stasis within each class. We propose that a directional trend in the evolution of prion sequence motifs associated with pathogenesis and infectivity could account for the origin of scrapie in mammals.
View Article and Find Full Text PDF