The pronephros (early-stage kidney) is an important osmoregulatory organ, and the onset of its function occurs relatively early in some teleost fishes. As such, any defects in kidney development and function are likely associated with a decreased ability to osmoregulate. Previous work has shown that early-life stage (ELS) zebrafish (Danio rerio) acutely exposed to Deepwater Horizon (DWH) crude oil exhibit transcriptional changes in key genes involved in pronephros development and function, as well as pronephric morphological defects and whole-animal osmoregulatory impairment.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
October 2022
Crude oil is known to induce developmental defects in teleost fish exposed during early-life stages (ELSs). A recent study has demonstrated that zebrafish (Danio rerio) larvae acutely exposed to Deepwater Horizon (DHW) crude oil showed transcriptional changes in key genes involved in early kidney (pronephros) development and function, which were coupled with pronephric morphological defects. Given the osmoregulatory importance of the kidney, it is unknown whether ELS effects arising from short-term crude exposures result in long-term osmoregulatory defects, particularly within estuarine fishes likely exposed to DWH oil following the spill.
View Article and Find Full Text PDFCrude oil has multiple toxic effects in fish, particularly during their early life stages. Recent transcriptomics studies have highlighted a potential effect on cholesterol homeostasis and biosynthesis, but have not investigated effects on steroid hormones, which are biosynthetically downstream metabolites of cholesterol. We exposed zebrafish (Danio rerio) embryos and larvae to 3 concentrations of a high energy water accommodated fraction (HEWAF) of crude oil and measured effects on cholesterol and steroid hormones at 48 and 96 h post fertilization (hpf).
View Article and Find Full Text PDFCrude oil is known to induce developmental defects in teleost fish exposed during early life stages (ELSs). While most studies in recent years have focused on cardiac endpoints, evidence from whole-animal transcriptomic analyses and studies with individual polycyclic aromatic hydrocarbons (PAHs) indicate that the developing kidney (i.e.
View Article and Find Full Text PDFThere is evidence that the combination of polycyclic aromatic hydrocarbons (PAHs) released in the Deepwater Horizon oil spill impairs the glucocorticoid stress response of vertebrates in the Gulf of Mexico, but the mechanisms are unclear. We hypothesized that inhibition of cortisol release may be due to 1) overstimulation of the hypothalamic-pituitary-inter-renal (HPI) axis, or 2) an inhibition of cortisol biosynthesis through PAH activation of the aryl hydrocarbon receptor (AhR). Using a flow-through system, Gulf toadfish (Opsanus beta) were continuously exposed to control conditions or one of 3 environmentally relevant concentrations of PAHs from Deepwater Horizon oil (∑PAH = 0-3 μg L ) for up to 7 d.
View Article and Find Full Text PDFIncreases in ambient salinity demand parallel increases in intestinal base secretion for maintenance of osmoregulatory status, which is likely the cause of a transient acidosis following transfer of euryhaline fish from freshwater to seawater. It was predicted that transfer of the marine Gulf toadfish (Opsanus beta) from seawater (35 ppt) to hypersaline (60 ppt) seawater (HSW) would lead to a transient acidosis that would be compensated by increases in branchial acid excretion to offset the acid-base disturbance. Toadfish exposed to HSW showed a significant decrease in blood pH and [HCO] but no increase in pCO, followed by a full recovery after 48-96 h.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
November 2020
Respiratory quotient (RQ) is commonly used to infer which substrates are oxidized, with glucose yielding RQ = 1 and fat normally thought to yield an average of RQ = 0.71. Because fat depot compositions differ among species, we examined how the various common fatty acids affect RQ.
View Article and Find Full Text PDFIn the aquatic environment, ubiquitous natural factors such as ultraviolet light (UV) and dissolved organic carbon (DOC) are likely to influence crude oil toxicity. The present study examined the interactive effects of DOC, UV, and DOC-UV co-exposure on the acute toxicity of Deepwater Horizon crude oil in larval red drum (Sciaenops ocellatus). Although DOC alone did not influence crude oil toxicity, it mildly reduced UV photo-enhanced toxicity.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
December 2020
The failure of the swim bladder to inflate during fish development is a common and sensitive response to exposure to petrochemicals. Here, we review potential mechanisms by which petrochemicals or their toxic components (polycyclic aromatic hydrocarbons; PAHs) may affect swim bladder inflation, particularly during early life stages. Surface films formed by oil can cause a physical barrier to primary inflation by air gulping, and are likely important during oil spills.
View Article and Find Full Text PDFEctothermic animals are especially susceptible to temperature change, considering that their metabolism and core temperature are linked to the environmental temperature. As global water temperatures continue to increase, so does the need to understand the capacity of organisms to tolerate change. Sheepshead minnows (Cyprinodon variegatus) are the most eurythermic fish species known to date and can tolerate a wide range of environmental temperatures from - 1.
View Article and Find Full Text PDFAquaporins are the predominant water-transporting proteins in vertebrates, but only a handful of studies have investigated aquaporin function in fish, particularly in mediating water permeability during salinity challenges. Even less is known about aquaporin function in hypoxia (low oxygen), which can profoundly affect gill function. Fish deprived of oxygen typically enlarge gill surface area and shrink the water-to-blood diffusion distance, to facilitate oxygen uptake into the bloodstream.
View Article and Find Full Text PDFEstuarine crocodiles, , inhabit freshwater, estuarine and marine environments. Despite being known to undertake extensive movements throughout and between hypo-osmotic and hyperosmotic environments, little is known about the role of the cloaca in coping with changes in salinity. We report here that, in addition to the well-documented functional plasticity of the lingual salt glands, the middle of the three cloacal segments (i.
View Article and Find Full Text PDFThe understanding of the detection threshold and behavioral response of fishes in response to crude oil is critical to predicting the effects of oil spills on wild fish populations. The oil spill released approximately 4.9 million barrels of crude oil into the northern Gulf of Mexico in 2010, overlapping spatially and temporally with the habitat of many pelagic fish species.
View Article and Find Full Text PDFFreshwater- and seawater-acclimated were exposed to acute hypoxia (10% air saturation, 3 h), followed by normoxic recovery (3 h). In both salinities, ventilation increased and heart rate fell in the classic manner, while initially declined by ∼50%, with partial restoration by 3 h of hypoxia, and no O debt repayment during recovery. Gill paracellular permeability (measured with [C] PEG-4000) was 1.
View Article and Find Full Text PDFIn fishes, olfactory cues evoke behavioral responses that are crucial to survival; however, the receptors, olfactory sensory neurons, are directly exposed to the environment and are susceptible to damage from aquatic contaminants. In 2010, 4.9 million barrels of crude oil were released into the northern Gulf of Mexico from the disaster, exposing marine organisms to this environmental contaminant.
View Article and Find Full Text PDFcrude oil is comprised of polycyclic aromatic hydrocarbons that cause a number of cardiotoxic effects in marine fishes across all levels of biological organization and at different life stages. Although cardiotoxic impacts have been widely reported, the mechanisms underlying these impairments in adult fish remain understudied. In this study, we examined the impacts of crude oil on cardiomyocyte contractility and electrophysiological parameters in freshly isolated ventricular cardiomyocytes from adult mahi-mahi ().
View Article and Find Full Text PDFThe simplified nervous system of Aplysia californica (Aplysia) allows for detailed studies of physiological and molecular changes in small sets of neurons. Sensory neurons of the biting and tail withdrawal reflexes are glutamatergic and show reduced L-Glutamate current density in aged animals, making them a good candidate to study age-related changes in glutamatergic responses. To examine if changes in ionotropic L-Glu receptor (iGluR) transcription underlie reduced physiology, mRNA expression of iGluR was quantified in two sensory neuron clusters of two cohorts of Aplysia at both sexual maturity (~8 months) and advanced age (~12 months).
View Article and Find Full Text PDFBackground: Mahi-mahi (Coryphaena hippurus) is a commercially and ecologically important fish species that is widely distributed in tropical and subtropical waters. Biological attributes and reproductive capacities of mahi-mahi make it a tractable model for experimental studies. In this study, life development of cultured mahi-mahi from the zygote stage to adult has been described.
View Article and Find Full Text PDFThe 2010 Deepwater Horizon oil spill coincided with the spawning season of many pelagic fish species in the Gulf of Mexico. Yet, few studies have investigated physiological responses of larval fish to interactions between anthropogenic crude oil exposure and natural factors (e.g.
View Article and Find Full Text PDFThis study examined potential interactive effects of co-exposure to Deepwater Horizon (DWH) crude oil (∼30 μg L ΣPAHs) for 24 h and either hypoxia (2.5 mg O L; 40% O saturation) or elevated temperature (30 °C) on the swimming performance of juvenile mahi-mahi (Coryphaena hippurus). Additionally, effects of shorter duration exposures to equal or higher doses of oil alone either prior to swimming or during the actual swim trial itself were examined.
View Article and Find Full Text PDFThe objective of the present study was to determine whether the polycyclic aromatic hydrocarbons (PAHs) associated with the Deepwater Horizon (DWH) oil spill impacted the stress response of teleost fish. The hypothesis was that intraperitoneal (IP) treatment with PAHs associated with the DWH oil spill or waterborne exposure to DWH oil high energy water-accommodated fraction (HEWAF) would result in the downregulation of the stress response of Gulf toadfish, Opsanus beta, a benthic marine teleost fish that resides in the Gulf of Mexico. In vivo plasma cortisol levels and adrenocorticotropic hormone (ACTH)-mediated cortisol secretion by in vitro isolated kidney tissue were measured.
View Article and Find Full Text PDFMahi-mahi (Coryphaena hippurus) is a commercially and ecologically important species of fish occurring in tropical and temperate waters worldwide. Understanding early life events is crucial for predicting effects of environmental stress, which is largely restricted by a lack of genetic resources regarding expression of early developmental genes and regulation of pathways. The need for anchoring developmental stages to transcriptional activities is highlighted by increasing evidence on the impacts of recurrent worldwide oil spills in this sensitive species during early development.
View Article and Find Full Text PDFCardiovascular performance is altered by temperature in larval fishes, but how acute versus chronic temperature exposures independently affect cardiac morphology and physiology in the growing larva is poorly understood. Consequently, we investigated the influence of water temperature on cardiac plasticity in developing mahi-mahi. Morphological (e.
View Article and Find Full Text PDFThe impacts of Deepwater Horizon (DWH) oil on morphology and function during embryonic development have been documented for a number of fish species, including the economically and ecologically important pelagic species, mahi-mahi (Coryphaena hippurus). However, further investigations on molecular events and pathways responsible for developmental toxicity have been largely restricted due to the limited molecular data available for this species. We sought to establish the de novo transcriptomic database from the embryos and larvae of mahi-mahi exposed to water accommodated fractions (HEWAFs) of two DWH oil types (weathered and source oil), in an effort to advance our understanding of the molecular aspects involved during specific toxicity responses.
View Article and Find Full Text PDFWindows of exposure to a weathered Deepwater Horizon oil sample (slick A) were examined for early life stage mahi-mahi (Coryphaena hippurus) to determine whether there are developmental periods of enhanced sensitivity during the course of a standard 96-h bioassay. Survival was assessed at 96 h following oil exposures ranging from 2 h to 96 h and targeting 3 general periods of development, namely the prehatch phase, the period surrounding hatch, and the posthatch phase. In addition, 3 different oil preparations were used: high- and low-energy water accommodated fractions of oil and very thin surface slicks of oil (∼1 μm).
View Article and Find Full Text PDF