Gas samples taken from two historic underground nuclear tests done in 1989 at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), were examined to determine how xenon isotopes fractionate because of early-time cavity processes, transport through the rock, or dispersal through tunnels. Xenon isotopes are currently being used to distinguish civilian sources of xenon in the atmosphere from sources associated with underground nuclear explosions (UNEs). The two nuclear tests included (1) BARNWELL, a test conducted in a vertical shaft approximately 600 m below ground surface at Pahute Mesa, and (2) DISKO ELM, a horizontal line-of-sight test done in P-tunnel approximately 261 m below the surface of Aqueduct Mesa.
View Article and Find Full Text PDFAn underground nuclear explosion (UNE) generates radioactive gases that can be transported through fractures to the ground surface over timescales of hours to months. If detected, the presence of particular short-lived radionuclides in the gas can provide strong evidence that a recent UNE has occurred. By drawing comparisons between sixteen similar historical U.
View Article and Find Full Text PDF