Publications by authors named "Edward M De Robertis"

embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early β-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes.

View Article and Find Full Text PDF

Recent research has shown that membrane trafficking plays an important role in canonical Wnt signaling through sequestration of the β-catenin destruction complex inside multivesicular bodies (MVBs) and lysosomes. In this study, we introduce Ouabain, an inhibitor of the Na,K-ATPase pump that establishes electric potentials across membranes, as a potent inhibitor of Wnt signaling. We find that Na,K-ATPase levels are elevated in advanced colon carcinoma, that this enzyme is elevated in cancer cells with constitutively activated Wnt pathway and is activated by GSK3 inhibitors that increase macropinocytosis.

View Article and Find Full Text PDF

This Issue of Cells & Development celebrates the centennial of the Spemann-Mangold organizer experiment. This was the most famous experiment in embryology and its reverberations have greatly influenced developmental biology. This historical issue describes the impact of the discovery and is a prelude to the second volume of this Festschrift, which will consist of the proceedings of the international meeting to be held in Freiburg University, at the place where the organizer was discovered.

View Article and Find Full Text PDF

Analyses of inequalities related to prevention and cancer therapeutics/care show disparities between countries with different economic standing, and within countries with high Gross Domestic Product. The development of basic technological and biological research provides clinical and prevention opportunities that make their implementation into healthcare systems more complex, mainly due to the growth of Personalized/Precision Cancer Medicine (PCM). Initiatives like the USA-Cancer Moonshot and the EU-Mission on Cancer and Europe's Beating Cancer Plan are initiated to boost cancer prevention and therapeutics/care innovation and to mitigate present inequalities.

View Article and Find Full Text PDF

Neural induction by cell-cell signaling was discovered a century ago by the organizer transplantations of Spemann and Mangold in amphibians. Spemann later found that early dorsal blastopore lips induced heads and late organizers trunk-tail structures. Identifying region-specific organizer signals has been a driving force in the progress of animal biology.

View Article and Find Full Text PDF

Fertilization triggers cytoplasmic movements in the frog egg that lead in mysterious ways to the stabilization of β-catenin on the dorsal side of the embryo. The novel Huluwa (Hwa) transmembrane protein, identified in China, is translated specifically in the dorsal side, acting as an egg cytoplasmic determinant essential for β-catenin stabilization. The Wnt signaling pathway requires macropinocytosis and the sequestration inside multivesicular bodies (MVBs, the precursors of endolysosomes) of Axin1 and Glycogen Synthase Kinase 3 (GSK3) that normally destroy β-catenin.

View Article and Find Full Text PDF

Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here, we show that a macropinocytosis activator, the tumor promoter phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling.

View Article and Find Full Text PDF

Activation of Wnt signaling triggers macropinocytosis and drives many tumors. We now report that the exogenous addition of the second messenger lipid sn-1,2 DAG to the culture medium rapidly induces macropinocytosis. This is accompanied by potentiation of the effects of added Wnt3a recombinant protein or the glycogen synthase kinase 3 (GSK3) inhibitor lithium chloride (LiCl, which mimics Wnt signaling) in luciferase transcriptional reporter assays.

View Article and Find Full Text PDF

Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here we show that a macropinocytosis activator, the tumor promoter Phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling.

View Article and Find Full Text PDF

Chordin (CHRD) is a secreted protein important in early development, yet a role for CHRD in human disease has not been identified. In this study we investigated CHRD in cancer and normal adult tissues using the wealth of genome-wide data available in public databases. We found that Chordin is amplified in the DNA of specific cancers such as lung squamous cell and others, although copy number variation did not strictly correlate with higher mRNA expression.

View Article and Find Full Text PDF

The Xenopus embryo provides an advantageous model system where genes can be readily transplanted as DNA or mRNA or depleted with antisense techniques. Here, we present a protocol to culture and image the cell biological properties of explanted Xenopus cap cells in tissue culture. We illustrate how this protocol can be applied to visualize lysosomes, macropinocytosis, focal adhesions, Wnt signaling, and cell migration.

View Article and Find Full Text PDF

Lysosomes are the digestive center of the cell and play important roles in human diseases, including cancer. Previous work has suggested that late endosomes, also known as multivesicular bodies (MVBs), and lysosomes are essential for canonical Wnt pathway signaling. Sequestration of Glycogen Synthase 3 (GSK3) and of β‐catenin destruction complex components in MVBs is required for sustained canonical Wnt signaling.

View Article and Find Full Text PDF

Developmental biology has contributed greatly to evolutionary biology in the past century. With the discovery that vertebrates share Hox genes with Drosophila in 1984, it became apparent that all animals evolved from variations of an ancestral embryonic patterning genetic tool-kit. In the dorsal-ventral (D-V) axis, a fundamental experiment was the Spemann-Mangold organizer transplant performed in 1924.

View Article and Find Full Text PDF

During canonical Wnt signaling, the Wnt receptor complex is sequestered together with glycogen synthase kinase 3 (GSK3) and Axin inside late endosomes, known as multivesicular bodies (MVBs). Here, we present experiments showing that Wnt causes the endocytosis of focal adhesion (FA) proteins and depletion of Integrin β 1 (ITGβ1) from the cell surface. FAs and integrins link the cytoskeleton to the extracellular matrix.

View Article and Find Full Text PDF

Here we review the regulation of macropinocytosis by Wnt growth factor signaling. Canonical Wnt signaling is normally thought of as a regulator of nuclear β-catenin, but emerging results indicate that there is much more than β-catenin to the Wnt pathway. Macropinocytosis is transiently regulated by EGF-RTK-Ras-PI3K signaling.

View Article and Find Full Text PDF

Wnt signaling has multiple functions beyond the transcriptional effects of β-catenin stabilization. We review recent investigations that uncover new cell physiological effects through the regulation of Wnt receptor endocytosis, Wnt-induced stabilization of proteins (Wnt-STOP), macropinocytosis, increase in lysosomal activity, and metabolic changes. Many of these growth-promoting effects of canonical Wnt occur within minutes and are independent of new protein synthesis.

View Article and Find Full Text PDF

Fibroblast growth factor (FGF)/extracellular signal-regulated kinase (ERK) signaling plays a crucial role in anterior-posterior (A-P) axial patterning of vertebrate embryos by promoting posterior development. In our screens for novel developmental regulators in embryos, we identified Fam3b as a secreted factor regulated in ectodermal explants. Family with sequence similarity 3 member B (FAM3B)/PANDER (pancreatic-derived factor) is a cytokine involved in glucose metabolism, type 2 diabetes, and cancer in mammals.

View Article and Find Full Text PDF

is one of the premier model systems to study cell and developmental biology in vivo in vertebrates. Here we briefly review how this South African frog came to be favored by a large community of scientists after the explosive growth of molecular biology and examine some of the original discoveries arising from this sturdy frog. Experimental embryology started in but developed in newt embryos for historical reasons.

View Article and Find Full Text PDF

The canonical Wnt pathway serves as a hub connecting diverse cellular processes, including β-catenin signaling, differentiation, growth, protein stability, macropinocytosis, and nutrient acquisition in lysosomes. We have proposed that sequestration of β-catenin destruction complex components in multivesicular bodies (MVBs) is required for sustained canonical Wnt signaling. In this study, we investigated the events that follow activation of the canonical Wnt receptor Lrp6 using an APEX2-mediated proximity labeling approach.

View Article and Find Full Text PDF

Dact/Dapper/Frodo members belong to an evolutionarily conserved family of Dishevelled-binding proteins present in mammals, birds, amphibians and fishes that are involved in the regulation of Wnt and TGF-β signaling. In addition to the three established genes (Dact1-3) that compose the Dact family, a fourth paralogue group of related proteins has been recently identified and named Dact-4. Interestingly, Dact-4 is the most rapidly evolving gene of the entire family, as it displays very low homology with other Dact proteins and has lost key conserved domains.

View Article and Find Full Text PDF

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Here, we report that Wnt-induced macropinocytosis is regulated through glycogen synthase kinase 3 (GSK3) and the β-catenin destruction complex. We find that mutation of Axin1, a tumor suppressor and component of the destruction complex, results in the activation of macropinocytosis.

View Article and Find Full Text PDF

Animal embryos have the remarkable property of self-organization. Over 125 years ago, Hans Driesch separated the two blastomeres of sea urchin embryos and obtained twins, in what was the foundation of experimental embryology. Since then, embryonic twinning has been obtained experimentally in many animals.

View Article and Find Full Text PDF

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Wnt treatment markedly increased the endocytosis and degradation in lysosomes of BSA. In this study, we report that in addition to receptor-mediated endocytosis, Wnt also triggers the intake of large amounts of extracellular fluid by macropinocytosis, a nonreceptor-mediated actin-driven process.

View Article and Find Full Text PDF

The nutrient-sensing metabolite S-adenosylmethionine (SAM) controls one-carbon metabolism by donating methyl groups to biochemical building blocks, DNA, RNA, and protein. Our recent work uncovered a requirement for cytoplasmic arginine methylation during Wnt signaling through the activity of protein arginine methyltransferase 1 (PRMT1), which transfers one-carbon groups from SAM to many protein substrates. Here, we report that treatments that decrease levels of the universal methyl donor SAM were potent inhibitors of Wnt signaling and of Wnt-induced digestion of extracellular proteins in endolysosomes.

View Article and Find Full Text PDF