Publications by authors named "Edward Lorance"

Hydrothermal dehydration is an attractive method for deoxygenation and upgrading of biofuels because it requires no reagents or catalysts other than superheated water. Although mono-alcohols cleanly deoxygenate via dehydration under many conditions, polyols such as those derived from saccharides and related structures are known to be recalcitrant with respect to dehydration. Here, we describe detailed mechanistic and kinetic studies of hydrothermal dehydration of 1,2- and 1,4-cyclohexanediols as model compounds to investigate how interactions between the hydroxyls can control the reaction.

View Article and Find Full Text PDF

Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive index. We have explored this connection for the unimolecular fragmentation reaction of a pinacol radical cation.

View Article and Find Full Text PDF

Sequestering carbon dioxide emissions by the trap and release of CO2 via thermally activated chemical reactions has proven problematic because of the energetic requirements of the release reactions. Here we demonstrate trap and release of carbon dioxide using electrochemical activation, where the reactions in both directions are exergonic and proceed rapidly with low activation barriers. One-electron reduction of 4,4'-bipyridine forms the radical anion, which undergoes rapid covalent bond formation with carbon dioxide to form an adduct.

View Article and Find Full Text PDF

Hydrothermal organic transformations under geochemically relevant conditions can result in complex product mixtures that form via multiple reaction pathways. The hydrothermal decomposition reactions of the model ketone dibenzyl ketone form a mixture of reduction, dehydration, fragmentation, and coupling products that suggest simultaneous and competitive radical and ionic reaction pathways. Here we show how Norrish Type I photocleavage of dibenzyl ketone can be used to independently generate the benzyl radicals previously proposed as the primary intermediates for the pure hydrothermal reaction.

View Article and Find Full Text PDF

Irreversible photooxidation based on N-O bond fragmentation is demonstrated for N-methoxyheterocycles in both the singlet and triplet excited state manifolds. The energetic requirements for bond fragmentation are studied in detail. Bond fragmentation in the excited singlet manifold is possible for ππ* singlet states with energies significantly larger than the N-O bond dissociation energy of ca 55 kcal mol(-1).

View Article and Find Full Text PDF

Methionine residues have been shown to function as efficient "hopping" sites in long-range electron transfer in model polyprolyl peptides. We suggest that a key to this ability of methionine is stabilization of the transient sulfur radical cation by neighboring proline amide participation. That is, in a model system a neighboring pyrrolidine amide lowers the oxidation potential of the thioether by over 0.

View Article and Find Full Text PDF

The diverse electrochemical and chemical oxidations of dichalcogena-mesocycles are analyzed, broadening our understanding of the chemistry of the corresponding radical cations and dications. 1,5-Diselenocane and 1,5-ditellurocane undergo reversible two-electron oxidation with inverted potentials analogous to 1,5-dithiocane. On the other hand, 1,5-selenathiocane and 1,5-tellurathiocane undergo one-electron oxidative dimerization.

View Article and Find Full Text PDF

To investigate neighboring amide participation in thioether oxidation, which may be relevant to brain oxidative stress accompanying beta-amyloid peptide aggregation, conformationally constrained methylthionorbornyl derivatives with amido moieties were synthesized and characterized, including an X-ray crystallographic study of one of them. Electrochemical oxidation of these compounds, studied by cyclic voltammetry, revealed that their oxidation peak potentials were less positive for those compounds in which neighboring group participation was geometrically possible. Pulse radiolysis studies provided evidence for bond formation between the amide moiety and sulfur on one-electron oxidation in cases where the moieties are juxtaposed.

View Article and Find Full Text PDF

The ability of neighboring C-Si, C-Sn, and Si-Si groups in conformationally constrained cyclic molecules to reduce the lowest ionization energies of sulfur, selenium, and tellurium compounds has been determined by charge-transfer spectroscopy of complexes with tetracyanoethylene. For selected compounds, ionization energies were determined by gas-phase photoelectron spectroscopy. The lowest ionization energies measured by photoelectron spectroscopy, with one exception, correlate with the charge-transfer spectroscopic data.

View Article and Find Full Text PDF

The ionization energies of conformationally constrained, newly synthesized beta-disilanyl sulfides and selenides were determined by photoelectron spectroscopy. These ionization energies reflect substantial (0.53-0.

View Article and Find Full Text PDF

The kinetics of bond fragmentation for a series of N-methoxypyridyl radicals are analyzed in terms of a simple curve-crossing model that includes bond stretching and bond bending coordinates. The model accurately reproduces the reaction surfaces calculated using density functional theory (DFT) and also the experimental reaction energy barriers. The reactions proceed on the ground state surface by avoidance of a conical intersection, which is clearly illustrated by the model.

View Article and Find Full Text PDF

[reaction: see text] Acidity constants and rates of reversible deprotonation of acetonyltriphenylphosphonium ion (1H+), phenacyltriphenylphosphonium ion (2H+), N-methyl-4-phenacylpyridinium ion (3H+), and N-methyl-4-(phenylsulfonylmethyl)pyridinium ion (4H+) by amines in water, 50% DMSO-50% water (v/v), and 90% DMSO-10% water (v/v) have been determined. From the respective Brønsted plots, log k(o) values for the intrinsic rate constants of the various proton transfers were obtained. Solvent transfer activity coefficients of the carbon acids and their respective conjugate bases were also determined which helped in understanding how the pKa values and intrinsic rate constants depend on the solvent.

View Article and Find Full Text PDF

Stannylated dinuclear iron dithiolates (mu-SSnMe(2)CH(2)S)[Fe(CO)(3)](2), (mu-SCH(2)SnMe(2)CH(2)S) [Fe(CO)(3)](2), and (mu-SCH(2)SnMe(3))(2)[Fe(CO)(3)](2), which are structurally similar to the active site of iron-only hydrogenase, were synthesized and studied by gas-phase photoelectron spectroscopy. The orbital origins of ionizations were assigned by comparison of He I and He II photoelectron spectra and with the aid of hybrid density functional electronic structure calculations. Stannylation lowers the ionization energy of sulfur lone pair orbitals in these systems owing to a geometry-dependent interaction.

View Article and Find Full Text PDF

[reaction: see text] N-Methoxypyridyl radicals formed by one-electron reduction of the corresponding cationic heterocycles undergo N-O bond cleavage. Experimental activation free energies for a series of these bond fragmentations are compared to corresponding barriers determined from electronic structure calculations. The DFT barriers agree well with those from experiment, being smaller than the latter values by an average value of ca.

View Article and Find Full Text PDF

The ultrafast N-O bond fragmentation in a series of N-methoxypyridyl radicals, formed by one-electron reduction of the corresponding N-methoxypyridiniums, has been investigated as potentially barrierless electron-transfer-initiated chemical reactions. A model for the reaction involving the electronic and geometric factors that control the shape of the potential energy surface for the reaction is described. On the basis of this model, molecular structural features appropriate for ultrafast reactivity are proposed.

View Article and Find Full Text PDF

3,6-bis(trifluoromethyl)- and 3,6-bis(pentafluoroethyl)-1,2-dithiin (1a,b), the first known perfluoroalkyl-substituted 1,2-dithiins, were synthesized from (Z,Z)-1,4-bis(tert-butylthio)-1,3-butadiene (2) to evaluate the effects of electron-withdrawing groups on the ionization and oxidation potentials of 1,2-dithiins. Analysis of the photoelectron spectra of 1a and 1b provided a basis for assigning orbital compositions. Ab initio calculations on these compounds showed that they adopt a twist geometry as does 1,2-dithiin (1c) itself.

View Article and Find Full Text PDF

N-alkoxyheterocycles can act as powerful one-electron acceptors in photochemical electron-transfer reactions. One-electron reduction of these species results in formation of a radical that undergoes N-O bond fragmentation to form an alkoxy radical and a neutral heterocycle. The kinetics of this N-O bond fragmentation reaction have been determined for a series of radicals with varying substituents and extents of delocalization.

View Article and Find Full Text PDF