Introduction: Research suggests that pain assessment involves a complex interaction between patients and clinicians. We sought to assess the agreement between pain scores reported by the patients themselves and the clinician's perception of a patient's pain in the emergency department (ED). In addition, we attempted to identify patient and physician factors that lead to greater discrepancies in pain assessment.
View Article and Find Full Text PDFObjective: Appropriate triage in patients presenting to the emergency department (ED) is often challenging. Little is known about the role of physician gestalt in ED triage. We aimed to compare the accuracy of emergency physician gestalt against the currently used computerized triage process.
View Article and Find Full Text PDFBackground: Little is known about pain trajectories in the emergency department (ED), which could inform the heterogeneous response to pain treatment. We aimed to identify clinically relevant subphenotypes of pain resolution in the ED and their relationships with clinical outcomes.
Methods: This retrospective cohort study used electronic clinical warehouse data from a tertiary medical center.
Pathogenic mutations in leucine-rich repeat kinase 2 (LRRK2) induce an age-dependent loss of dopaminergic (DA) neurons. We have identified Furin 1, a pro-protein convertase, as a translational target of LRRK2 in DA neurons. Transgenic knockdown of Furin1 or its substrate the bone morphogenic protein (BMP) ligand glass bottom boat (Gbb) protects against LRRK2-induced loss of DA neurons.
View Article and Find Full Text PDFRetrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites.
View Article and Find Full Text PDFGiven their established analgesic properties, nonsteroidal anti-inflammatory drugs (NSAIDs) represent an important postoperative pain management option. This study investigated: (1) the effects of mild or moderate renal insufficiency and mild hepatic impairment on the pharmacokinetics (PK) of diclofenac and hydroxypropyl-β-cyclodextrin (HPβCD) following administration of the injectable NSAID HPβCD-diclofenac; and (2) the PK of HPβCD following administration of HPβCD-diclofenac and intravenous itraconazole formulated with HPβCD in healthy adults. Diclofenac clearance (CL) and volume of distribution (V ) tended to increase with decreasing renal function (moderate insufficiency versus mild insufficiency or healthy controls).
View Article and Find Full Text PDFParkinson's disease gene leucine-rich repeat kinase 2 (LRRK2) has been implicated in a number of processes including the regulation of mitochondrial function, autophagy and endocytic dynamics; nevertheless, we know little about its potential role in the regulation of synaptic plasticity. Here we demonstrate that postsynaptic knockdown of the fly homologue of LRRK2 thwarts retrograde, homeostatic synaptic compensation at the larval neuromuscular junction. Conversely, postsynaptic overexpression of either the fly or human LRRK2 transgene induces a retrograde enhancement of presynaptic neurotransmitter release by increasing the size of the release ready pool of vesicles.
View Article and Find Full Text PDFA neuronal F-box protein FSN-1 regulates Caenorhabditis elegans neuromuscular junction development by negatively regulating DLK-mediated MAPK signalling. In the present study, we show that attenuation of insulin/IGF signalling also contributes to FSN-1-dependent synaptic development and function. The aberrant synapse morphology and synaptic transmission in fsn-1 mutants are partially and specifically rescued by reducing insulin/IGF-signalling activity in postsynaptic muscles, as well as by reducing the activity of EGL-3, a prohormone convertase that processes agonistic insulin/IGF ligands INS-4 and INS-6, in neurons.
View Article and Find Full Text PDFHomeostatic mechanisms operate to stabilize synaptic function; however, we know little about how they are regulated. Exploiting Drosophila genetics, we have uncovered a critical role for the target of rapamycin (TOR) in the regulation of synaptic homeostasis at the Drosophila larval neuromuscular junction. Loss of postsynaptic TOR disrupts a retrograde compensatory enhancement in neurotransmitter release that is normally triggered by a reduction in postsynaptic glutamate receptor activity.
View Article and Find Full Text PDFRetrograde signaling is essential for coordinating the growth of synaptic structures; however, it is not clear how it can lead to modulation of cytoskeletal dynamics and structural changes at presynaptic terminals. We show that loss of retrograde bone morphogenic protein (BMP) signaling at the Drosophila larval neuromuscular junction (NMJ) leads to a significant reduction in levels of Rac GEF Trio and a diminution of transcription at the trio locus. We further find that Trio is required in motor neurons for normal structural growth.
View Article and Find Full Text PDFIntersectins (Itsn) are conserved EH and SH3 domain containing adaptor proteins. In Drosophila melanogaster, ITSN is required to regulate synaptic morphology, to facilitate efficient synaptic vesicle recycling and for viability. Here, we report our genetic analysis of Caenorhabditis elegans intersectin.
View Article and Find Full Text PDFDuring synapse formation, specialized subcellular structures develop at synaptic junctions in a tightly regulated fashion. Cross-signalling initiated by ephrins, Wnts and transforming growth factor-beta family members between presynaptic and postsynaptic termini are proposed to govern synapse formation. It is not well understood how multiple signals are integrated and regulated by developing synaptic termini to control synaptic differentiation.
View Article and Find Full Text PDFIndividual Neisseria gonorrhoeae colony opacity-associated (Opa) protein variants can bind up to four different carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) receptors. Most human cells encountered by gonococci express a combination of CEACAM receptors, thereby complicating the elucidation of intracellular signaling pathways triggered by individual receptors. Here, we compare the process of bacterial engulfment by a panel of stably transfected HeLa epithelial cell lines expressing each CEACAM receptor in isolation.
View Article and Find Full Text PDFGonorrhea is characterized by a purulent urethral or cervical discharge consisting primarily of neutrophils associated with Neisseria gonorrhoeae. These interactions are facilitated by gonococcal colony opacity-associated (Opa) protein binding to host cellular CEACAM receptors. Of these, CEACAM3 is restricted to neutrophils and contains an immunoreceptor tyrosine-based activation motif (ITAM) reminiscent of that found within certain phagocytic Fc receptors.
View Article and Find Full Text PDFNeisseria gonorrhoeae can be internalized by mammalian cells through interactions between bacterial opacity-associated (Opa) adhesins and members of the human carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. We examined the role of phosphatidylinositol 3-kinases (PI3Ks) in gonococcal invasion of epithelial cell lines expressing either CEACAM1 or CEACAM3. CEACAM3-mediated internalization, but not that mediated by CEACAM1, was accompanied by localized and transient accumulation of the class I PI3K product phosphatidylinositol 3,4,5-trisphosphate at sites of bacterial engulfment.
View Article and Find Full Text PDF