Subetadex-α-methyl (SBX-Me), a modified, polyanionic cyclodextrin scaffold, has been evaluated for its utilization as a medical countermeasure (MCM) to neutralize the effects of fentanyl and related opioids. Initial toxicity assays demonstrate that SBX-Me has a nontoxic profile, comparable to the FDA-approved cyclodextrin-based drug Sugammadex. Pharmacokinetic analysis showed rapid clearance of SBX-Me with an elimination half-life of ∼7.
View Article and Find Full Text PDFNerve agents have experienced a resurgence in recent times with their use against civilian targets during the attacks in Syria (2012), the poisoning of Sergei and Yulia Skripal in the United Kingdom (2018) and Alexei Navalny in Russia (2020), strongly renewing the importance of antidote development against these lethal substances. The current standard treatment against their effects relies on the use of small molecule-based oximes that can efficiently restore acetylcholinesterase (AChE) activity. Despite their efficacy in reactivating AChE, the action of drugs like 2-pralidoxime (2-PAM) is primarily limited to the peripheral nervous system (PNS) and, thus, provides no significant protection to the central nervous system (CNS).
View Article and Find Full Text PDFOsteoarthritis (OA) is a painful and debilitating disease characterized by the chronic and progressive degradation of articular cartilage. Post-traumatic OA (PTOA) is a secondary form of OA that develops in ~50% of cases of severe articular injury. Inflammation and re-occurring injury have been implicated as contributing to the progression of PTOA after the initial injury.
View Article and Find Full Text PDFThe gut microbiota is a vast and diverse microbial community that has co-evolved with its host to perform a variety of essential functions involved in the utilization of nutrients and the processing of xenobiotics. Shifts in the composition of gut microbiota can disturb the balance of organisms which can influence the biodisposition of orally administered drugs. To determine how changes in the gut microbiome can alter drug disposition, the pharmacokinetics (PK), and biodistribution of acetaminophen were assessed in C57Bl/6 mice after treatment with the antibiotics ciprofloxacin, amoxicillin, or a cocktail of ampicillin/neomycin.
View Article and Find Full Text PDFNaphthalene (NA) is a ubiquitous environmental pollutant and possible human carcinogen that forms tumors in rodents with tissue/regional and species selectivity. This study seeks to determine whether NA is able to directly adduct DNA in an ex vivo culture system. Metabolically active lung tissue was isolated and incubated in explant culture with carbon-14 labeled NA (0, 25, 250 μM) or 1,2-naphthoquinone (NQ), followed by AMS analyses of metabolite binding to DNA.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res B
January 2019
Quantitatively benchmarking similarities and differences between the in vivo central nervous system and in vitro neuronal cultures can qualify discrepancies in functional responses and establish the utility of in vitro platforms. In this work, extracellular electrophysiology responses of cortical neurons in awake, freely-moving animals were compared to in vitro cultures of dissociated cortical neurons. After exposure to two well-characterized drugs, atropine and ketamine, a number of key points were observed: (1) significant differences in spontaneous firing activity for in vivo and in vitro systems, (2) similar response trends in single-unit spiking activity after exposure to atropine, and (3) greater sensitivity to the effects of ketamine in vitro.
View Article and Find Full Text PDFBangladesh has made significant progress towards elimination of visceral leishmaniasis, and is on track to achieve its target of less than one case per 10,000 inhabitants in each subdistrict in 2017. As the incidence of disease falls, it is likely that the political capital and financial resources dedicated towards the elimination of visceral leishmaniasis may decrease, raising the prospect of disease resurgence. Policy memos may play a crucial role during the transition of the elimination plan from the 'attack' to the 'consolidation' and 'maintenance' phases, highlighting key stakeholders and areas where ongoing investment is crucial.
View Article and Find Full Text PDFOrganophosphorus-based (OP) nerve agents represent some of the most toxic substances known to mankind. The current standard of care for exposure has changed very little in the past decades, and relies on a combination of atropine to block receptor activity and oxime-type acetylcholinesterase (AChE) reactivators to reverse the OP binding to AChE. Although these oximes can block the effects of nerve agents, their overall efficacy is reduced by their limited capacity to cross the blood-brain barrier (BBB).
View Article and Find Full Text PDFPancreatic cancer is the fourth leading cause of cancer death in the U.S. Once diagnosed, prognosis is poor with a 5-year survival rate of less than 5%.
View Article and Find Full Text PDFNanolipoprotein particles (NLPs) are nanometer-scale discoidal particles that feature a phospholipid bilayer confined within an apolipoprotein "scaffold," which are useful for solubilizing hydrophobic molecules such as drugs and membrane proteins. NLPs are synthesized either by mixing the purified apolipoprotein with phospholipids and other cofactors or by cell-free protein synthesis followed by self-assembly of the nanoparticles in the reaction mixture. Either method can be problematic regarding the production of homogeneous and monodispersed populations of NLPs, which also currently requires multiple synthesis and purification steps.
View Article and Find Full Text PDFBiodistribution is an important factor in better understanding silica dioxide nanoparticle (SiNP) safety. Currently, comprehensive studies on biodistribution are lacking, most likely due to the lack of suitable analytical methods. Accelerator mass spectrometry was used to investigate the relationship between administered dose, pharmacokinetics (PK), and long-term biodistribution of (14)C-SiNPs in vivo.
View Article and Find Full Text PDFBackground: Nanolipoprotein particles (NLPs) are discoidal, nanometer-sized particles comprised of self-assembled phospholipid membranes and apolipoproteins. NLPs assembled with human apolipoproteins have been used for myriad biotechnology applications, including membrane protein solubilization, drug delivery, and diagnostic imaging. To expand the repertoire of lipoproteins for these applications, insect apolipophorin-III (apoLp-III) was evaluated for the ability to form discretely-sized, homogeneous, and stable NLPs.
View Article and Find Full Text PDFHeterogeneity is a fact that plagues the characterization and application of many self-assembled biological constructs. The importance of obtaining particle homogeneity in biological assemblies is a critical goal, as bulk analysis tools often require identical species for reliable interpretation of the results-indeed, important tools of analysis such as x-ray diffraction typically require over 90% purity for effectiveness. This issue bears particular importance in the case of lipoproteins.
View Article and Find Full Text PDFHydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBHs), poor water solubility. Nanolipoprotein particles (NLPs) formed from apolipoproteins and phospholipids offer a novel means of incorporating MBHs into a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures.
View Article and Find Full Text PDFNanolipoprotein particles (NLPs) are nanometer-sized, discoidal particles that self-assemble from purified apolipoprotein and phospholipid. Their size and facile functionalization suggest potential application of NLPs as platforms for the presentation and delivery of recombinant proteins. To this end, we investigated incorporation of nickel-chelating lipids into NLPs (NiNLPs) and subsequent sequestration of polyhistidine (His)-tagged proteins.
View Article and Find Full Text PDFTo better understand the incorporation of membrane proteins into discoidal nanolipoprotein particles (NLPs) we have used atomic force microscopy (AFM) to image and analyze NLPs assembled in the presence of bacteriorhodopsin (bR), lipoprotein E4 n-terminal 22k fragment scaffold and DMPC lipid. The self-assembly process produced two distinct NLP populations: those containing inserted bR (bR-NLPs) and those that did not (empty-NLPs). The bR-NLPs were distinguishable from empty-NLPs by an average increase in height of 1.
View Article and Find Full Text PDFMembrane-associated proteins and protein complexes account for approximately a third or more of the proteins in the cell (1, 2). These complexes mediate essential cellular processes; including signal transduc-tion, transport, recognition, bioenergetics and cell-cell communication. In general, membrane proteins are challenging to study because of their insolubility and tendency to aggregate when removed from their protein lipid bilayer environment.
View Article and Find Full Text PDFHere we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs.
View Article and Find Full Text PDFSelf-assembly of purified apolipoproteins and phospholipids results in the formation of nanometer-sized lipoprotein complexes, referred to as nanolipoprotein particles (NLPs). These bilayer constructs are fully soluble in aqueous environments and hold great promise as a model system to aid in solubilizing membrane proteins. Size variability in the self-assembly process has been recognized for some time, yet limited studies have been conducted to examine this phenomenon.
View Article and Find Full Text PDFSpontaneous interaction of purified apolipoproteins and phospholipids results in formation of lipoprotein particles with nanometer-sized dimensions; we refer to these assemblies as nanolipoprotein particles or NLPs. These bilayer constructs can serve as suitable mimetics of biological membranes and are fully soluble in aqueous environments. We made NLPs from dimyristoylphospatidylcholine (DMPC) in combination with each of four different apolipoproteins: apoA-I, Delta-apoA-I fragment, apoE4 fragment, and apolipophorin III (apoLp-III) from the silk moth B.
View Article and Find Full Text PDFAppl Environ Microbiol
March 2006
Bacterial source tracking is used to apportion fecal pollution among putative sources. Within this context, library-independent markers are genetic or phenotypic traits that can be used to identify the host origin without a need for library-dependent classification functions. The objective of this project was to use mixed-genome Enterococcus microarrays to identify library-independent markers.
View Article and Find Full Text PDFWe describe the protocol for an inexpensive and nondestructive optical reflectance assay for the measurement of biofilm formation. Reflectance data are obtained using an Ocean Optics (Dunedin, Florida) USB 2000 spectrometer with a polychromatic light source. A fiber optic cable is used both for illumination and collection, and Ocean Optics OOIBase32 Platinum software is used for preliminary processing of the data.
View Article and Find Full Text PDFMany researchers have speculated that infection dynamics of Sin Nombre virus are driven by density patterns of its major host, Peromyscus maniculatus. Few, if any, studies have examined this question systematically at a realistically large spatial scale, however. We collected data from 159 independent field sites within a 1 million-hectare study area in Nevada and California, from 1995-1998.
View Article and Find Full Text PDF