Ordered protein phosphorylation by CDKs is a key mechanism for regulating the cell cycle. How temporal order is enforced in mammalian cells remains unclear. Using a fixed cell kinase assay and phosphoproteomics, we show how CDK1 activity and non-catalytic CDK1 subunits contribute to the choice of substrate and site of phosphorylation.
View Article and Find Full Text PDFKinetochore protein phosphorylation promotes the correction of erroneous microtubule attachments to ensure faithful chromosome segregation during cell division. Determining how phosphorylation executes error correction requires an understanding of whether kinetochore substrates are completely (i.e.
View Article and Find Full Text PDFObjective: Infantile-onset spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality, typically resulting in death preceding age 2. Clinical trials in this population require an understanding of disease progression and identification of meaningful biomarkers to hasten therapeutic development and predict outcomes.
Methods: A longitudinal, multicenter, prospective natural history study enrolled 26 SMA infants and 27 control infants aged <6 months.
Duchenne muscular dystrophy is a rare, progressive, muscle-wasting disease leading to severe disability and premature death. Treatment is currently symptomatic, but several experimental therapies are in development. Implemented care standards, validated outcome measures correlating with clinical benefit, and comprehensive information about the natural history of the disease are essential for regulatory approval of any treatment.
View Article and Find Full Text PDFObjective: This study prospectively assessed putative promising biomarkers for use in assessing infants with spinal muscular atrophy (SMA).
Methods: This prospective, multi-center natural history study targeted the enrollment of SMA infants and healthy control infants less than 6 months of age. Recruitment occurred at 14 centers within the NINDS National Network for Excellence in Neuroscience Clinical Trials (NeuroNEXT) Network.
Objective: To continue evaluation of the long-term efficacy and safety of eteplirsen, a phosphorodiamidate morpholino oligomer designed to skip DMD exon 51 in patients with Duchenne muscular dystrophy (DMD). Three-year progression of eteplirsen-treated patients was compared to matched historical controls (HC).
Methods: Ambulatory DMD patients who were ≥7 years old and amenable to exon 51 skipping were randomized to eteplirsen (30/50mg/kg) or placebo for 24 weeks.
Background: AVI-7288 is a phosphorodiamidate morpholino oligomer with positive charges that targets the viral messenger RNA that encodes Marburg virus (MARV) nucleoprotein. Its safety in humans is undetermined.
Methods: We assessed the efficacy of AVI-7288 in a series of studies involving a lethal challenge with MARV in nonhuman primates.
Two identical single-ascending-dose studies evaluated the safety and pharmacokinetics (PK) of AVI-6002 and AVI-6003, two experimental combinations of phosphorodiamidate morpholino oligomers with positive charges (PMOplus) that target viral mRNA encoding Ebola virus and Marburg virus proteins, respectively. Both AVI-6002 and AVI-6003 were found to suppress disease in virus-infected nonhuman primates in previous studies. AVI-6002 (a combination of AVI-7537 and AVI-7539) or AVI-6003 (a combination of AVI-7287 and AVI-7288) were administered as sequential intravenous (i.
View Article and Find Full Text PDFAn important feature of atopic eczema (AE) is a decreased skin barrier function. The stratum corneum (SC) lipids - comprised of ceramides (CERs), free fatty acids (FFAs) and cholesterol - fulfil a predominant role in the skin barrier function. In this clinical study, the carbon chain length distribution of SC lipids (FFAs and CERs) and their importance for the lipid organization and skin barrier function were examined in AE patients and compared with control subjects.
View Article and Find Full Text PDFObjective: In prior open-label studies, eteplirsen, a phosphorodiamidate morpholino oligomer, enabled dystrophin production in Duchenne muscular dystrophy (DMD) with genetic mutations amenable to skipping exon 51. The present study used a double-blind placebo-controlled protocol to test eteplirsen's ability to induce dystrophin production and improve distance walked on the 6-minute walk test (6MWT).
Methods: DMD boys aged 7 to 13 years, with confirmed deletions correctable by skipping exon 51 and ability to walk 200 to 400 m on 6 MWT, were randomized to weekly intravenous infusions of 30 or 50 mg/kg/wk eteplirsen or placebo for 24 weeks (n = 4/group).
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene that result in a deficiency of SMN protein. One approach to treat SMA is to use antisense oligonucleotides (ASOs) to redirect the splicing of a paralogous gene, SMN2, to boost production of functional SMN. Injection of a 2'-O-2-methoxyethyl-modified ASO (ASO-10-27) into the cerebral lateral ventricles of mice with a severe form of SMA resulted in splice-mediated increases in SMN protein and in the number of motor neurons in the spinal cord, which led to improvements in muscle physiology, motor function and survival.
View Article and Find Full Text PDFExpert Rev Neurother
September 2010
Abnormalities of myelin are common in lysosomal and peroxisomal disorders. Most display a primary loss of myelin in which the myelin sheath and/or oligodendrocytes are selectively targeted by diverse pathogenetic processes. The most severe and, hence, clinically relevant are heritable diseases predominantly of infants and children, the leukodystrophies: metachromatic, globoid cell (Krabbe disease) and adreno-leukodystrophy.
View Article and Find Full Text PDFFrontotemporal lobar degeneration is comprised of three syndromes: frontotemporal dementia (FTD), semantic dementia, and progressive nonfluent aphasia, with FTD being the most prevalent. FTD is characterized predominantly by character change and disordered social conduct. A variety of pathologies may underlie these syndromes, yet it is the location of the pathology rather than the type that dictates the clinical features of the disease.
View Article and Find Full Text PDFOver 7000 rare diseases, each <200,000 US residents, affect nearly 30 million people in the United States. Furthermore, for the 10% of people with a rare disease and for their families, these disorders no longer seem rare. Molecular genetics have characterized the cause of many rare diseases and provide unprecedented opportunities for identifying patients, determining phenotypes, and devising treatments to prevent, stabilize, or improve each disease.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2006
Pompe disease (glycogen storage disease type II) is a glycogen storage disease caused by a deficiency of the lysosomal enzyme, acid maltase/acid alpha-1,4 glucosidase (GAA). Deficiency of the enzyme leads primarily to intra-lysosomal glycogen accumulation, primarily in cardiac and skeletal muscles, due to the inability of converting glycogen into glucose. Enzyme replacement therapy (ERT) has been applied to replace the deficient enzyme and to restore the lost function.
View Article and Find Full Text PDFWe developed normative profiles of physical functioning (mobility and self-care) in infancy up through 14 years of age with an expanded version of the Pediatric Evaluation of Disability Inventory. Mobility and self-care reference curves were based on the original Pediatric Evaluation of Disability Inventory standardization data (n = 412) and data from an additional cross-sectional, convenience sample (n = 373) via web-based survey, telephone or in-person interviews of parents. This new sample, which included children up through 14 years-of-age, was stratified for race, age, and sex, but was primarily limited geographically to the Northeast region of the United States.
View Article and Find Full Text PDFObjective: To determine whether newborn screening by tandem mass spectrometry (MS/MS) for medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is cost-effective versus not screening and to define the contributions of disease, test, and population parameters on the decision.
Methods: A decision-analytic Markov model was designed to perform cost-effectiveness and cost-utility analyses measuring the discounted, incremental cost per life-year saved and per quality-adjusted life-year saved of newborn screening for MCADD compared with not screening. A hypothetical cohort of neonates made transitions among a set of health states that reflected clinical status, morbidity, and cost.
Maple syrup urine disease (MSUD) is an inborn error of amino acid metabolism, which affects the brain tissue resulting in impairment or death if untreated. Imaging studies have shown reversible brain edema during acute metabolic decompensation. The purpose of this paper is to describe the diffusion-weighted imaging (DWI) and spectroscopy findings during metabolic decompensation and to assess the value of these findings in the prediction of patient outcome.
View Article and Find Full Text PDFAlthough great promise has been made in the field of gene therapy, a number of difficulties must be solved before successful human studies can be completed. These issues involve safety, immunological reactions to the vectors and their transgene products, persistent transgene expression, and ability to repeat administrations of the vector safely. A major hurdle that must be overcome is the ubiquitous delivery of the transgene throughout the nervous system.
View Article and Find Full Text PDFMitochondrial disease is classically associated with deep gray-matter lesions. When white matter is involved, the lesions are typically subcortical and overshadowed by more significant disease in the gray matter. We report six infants in five families who developed neurodegenerative diseases characterized primarily by abnormalities in deep white-matter structures such as the periventricular region, internal capsule, and corpus callosum.
View Article and Find Full Text PDF