Publications by authors named "Edward Kalkreuter"

Specialized or secondary metabolites are small molecules of biological origin, often showing potent biological activities with applications in agriculture, engineering and medicine. Usually, the biosynthesis of these natural products is governed by sets of co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To share information about BGCs in a standardized and machine-readable way, the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated in 2015.

View Article and Find Full Text PDF
Article Synopsis
  • - Polyketide synthases (PKSs) typically produce a variety of natural products but rarely include sulfur-containing compounds, leading to an investigation of thiocysteine lyase (SH) domains involved in biosynthesizing the leinamycin family, like LnmJ-SH and GnmT-SH.
  • - A detailed study was conducted using a 1.8 Å resolution crystal structure of GnmT-SH, alongside synthesized substrate mimics and various techniques such as bioinformatics and mutagenesis, to understand the acyl carrier protein (ACP)-tethered substrate interactions and specificity of the SH domains.
  • - The research highlights evolutionary modifications in protein structures that allow for the accommodation of larger ACP-t
View Article and Find Full Text PDF

Enediyne natural products are renowned for their potent cytotoxicities but the biosynthesis of their defining 1,5-diyne-3-ene core moiety remains largely enigmatic. Since the discovery of the enediyne polyketide synthase cassette in 2002, genome sequencing has revealed thousands of distinct enediyne biosynthetic gene clusters, each harboring the conserved enediyne polyketide synthase cassette. Here we report that (1) the products of this cassette are an iodoheptaene, a diiodotetrayne and two pentaynes; (2) the diiodotetrayne represents a common biosynthetic intermediate for all known enediynes; and (3) cryptic iodination can be exploited to increase enediyne titers.

View Article and Find Full Text PDF

Iso-Migrastatin (iso-MGS) and lactimidomycin (LTM) are glutarimide-containing polyketide natural products (NPs) that are biosynthesized by homologous acyltransferase (AT)-less type I polyketide synthase (PKS) assembly lines. The biological activities of iso-MGS and LTM have inspired numerous efforts to generate analogues via genetic manipulation of their biosynthetic machinery in both native producers and model heterologous hosts. A detailed understanding of the MGS and LTM AT-less type I PKSs would serve to inspire future engineering efforts while advancing the fundamental knowledge of AT-less type I PKS enzymology.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a CRISPR-Cas9 system in Streptomyces platensis to simplify the manipulation of biosynthesis for natural products like platensimycin, platencin, and platensilin.
  • The researchers created designer recombinant strains (SB12051, SB12052, SB12053) that achieved high production levels of these compounds during fermentation in a specialized medium.
  • The discovery of distinct chemistries from specific diterpene synthases and the development of a mutant strain (SB12054) suggests new avenues for engineering diterpenoid biosynthesis in the future.
View Article and Find Full Text PDF

Actinobacteria, the bacterial phylum most renowned for natural product discovery, has been established as a valuable source for drug discovery and biotechnology but is underrepresented within accessible genome and strain collections. Herein, we introduce the Natural Products Discovery Center (NPDC), featuring 122,449 strains assembled over eight decades, the genomes of the first 8490 NPDC strains (7142 Actinobacteria), and the online NPDC Portal making both strains and genomes publicly available. A comparative survey of RefSeq and NPDC Actinobacteria highlights the taxonomic and biosynthetic diversity within the NPDC collection, including three new genera, hundreds of new species, and ~7000 new gene cluster families.

View Article and Find Full Text PDF

The anthraquinone-fused enediynes (AFEs) combine an anthraquinone moiety and a ten-membered enediyne core capable of generating a cytotoxic diradical species. AFE cyclization is triggered by opening the F-ring epoxide, which is also the site of the most structural diversity. Previous studies of tiancimycin A, a heavily modified AFE, have revealed a cryptic aldehyde blocking installation of the epoxide, and no unassigned oxidases could be predicted within the tnm biosynthetic gene cluster.

View Article and Find Full Text PDF

The enediynes are structurally characterized by a 1,5-diyne-3-ene motif within a 9- or 10-membered enediyne core. The anthraquinone-fused enediynes (AFEs) are a subclass of 10-membered enediynes that contain an anthraquinone moiety fused to the enediyne core as exemplified by dynemicins and tiancimycins. A conserved iterative type I polyketide synthase (PKSE) is known to initiate the biosynthesis of all enediyne cores, and evidence has recently been reported to suggest that the anthraquinone moiety also originates from the PKSE product.

View Article and Find Full Text PDF

With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC.

View Article and Find Full Text PDF

First discovered in 1989, the anthraquinone-fused enediynes are a class of DNA-cleaving bacterial natural products composed of a DNA-intercalating anthraquinone moiety and a 10-membered enediyne warhead. However, until recently, there has been a lack of genetically amenable hosts and sequenced biosynthetic gene clusters available for solving the biosynthetic questions surrounding these molecules. Herein, we have identified and biochemically and structurally characterized TnmK1, a member of the α/β-hydrolase fold superfamily responsible for the C-C bond formation linking the anthraquinone moiety and enediyne core together in tiancimycin (TNM) biosynthesis.

View Article and Find Full Text PDF

Nature forms S-S bonds by oxidizing two sulfhydryl groups, and no enzyme installing an intact hydropersulfide (-SSH) group into a natural product has been identified to date. The leinamycin (LNM) family of natural products features intact S-S bonds, and previously we reported an SH domain (LnmJ-SH) within the LNM hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line as a cysteine lyase that plays a role in sulfur incorporation. Here we report the characterization of an S-adenosyl methionine (SAM)-dependent hydropersulfide methyltransferase (GnmP) for guangnanmycin (GNM) biosynthesis, discovery of hydropersulfides as the nascent products of the GNM and LNM hybrid NRPS-PKS assembly lines, and revelation of three SH domains (GnmT-SH, LnmJ-SH, and WsmR-SH) within the GNM, LNM, and weishanmycin (WSM) hybrid NRPS-PKS assembly lines as thiocysteine lyases.

View Article and Find Full Text PDF

Polyketides, one of the largest classes of natural products, are often clinically relevant. The ability to engineer polyketide biosynthesis to produce analogs is critically important. Acyltransferases (ATs) of modular polyketide synthases (PKSs) catalyze the installation of malonyl-CoA extenders into polyketide scaffolds.

View Article and Find Full Text PDF

Sulfur incorporation into natural products is a critical area of biosynthetic studies. Recently, a subset of sulfur-containing angucyclines has been discovered, and yet, the sulfur incorporation step is poorly understood. In this work, a series of thioether-bridged angucyclines were discovered, and a cryptic epoxide Michael acceptor intermediate was revealed en route to thioangucyclines (TACs) A and B.

View Article and Find Full Text PDF

The members of the arylamine -acetyltransferase (NAT) family of enzymes are important for their many roles in xenobiotic detoxification in bacteria and humans. However, very little is known about their roles outside of detoxification or their specificities for acyl donors larger than acetyl-CoA. Herein, we report the detailed study of PtmC, an unusual NAT homologue encoded in the biosynthetic gene cluster for thioplatensimycin, thioplatencin, and a newly reported scaffold, thioplatensilin, thioacid-containing diterpenoids and highly potent inhibitors of bacterial and mammalian fatty acid synthases.

View Article and Find Full Text PDF

Bacterial natural products (NPs) and their analogs constitute more than half of the new small molecule drugs developed over the past few decades. Despite this success, interest in natural products from major pharmaceutical companies has decreased even as genomics has uncovered the large number of biosynthetic gene clusters (BGCs) that encode for novel natural products. To date, there is still a lack of universal strategies and enabling technologies to discover natural products at scale and speed.

View Article and Find Full Text PDF
Article Synopsis
  • Nonheme diiron monooxygenases are a newly identified group of enzymes involved in secondary metabolism, including the specific enzyme PtmU3.
  • PtmU3 introduces a C-5 β-hydroxyl group in the biosynthesis of platensimycin and platencin, which are effective inhibitors of fatty acid synthases in both bacteria and mammals.
  • This enzyme features a unique triosephosphate isomerase (TIM) barrel structure and a novel noncanonical diiron active site, highlighting a new superfamily of enzymes related to metal-dependent oxygen activation.
View Article and Find Full Text PDF

The scaffolds of polyketides are constructed via assembly of extender units based on malonyl-CoA and its derivatives that are substituted at the C2-position with diverse chemical functionality. Subsequently, a transcription-factor-based biosensor for malonyl-CoA has proven to be a powerful tool for detecting malonyl-CoA, facilitating the dynamic regulation of malonyl-CoA biosynthesis and guiding high-throughput engineering of malonyl-CoA-dependent processes. Yet, a biosensor for the detection of malonyl-CoA derivatives has yet to be reported, severely restricting the application of high-throughput synthetic biology approaches to engineering extender unit biosynthesis and limiting the ability to dynamically regulate the biosynthesis of polyketide products that are dependent on such α-carboxyacyl-CoAs.

View Article and Find Full Text PDF

Platensimycin (PTM) and platencin (PTN) are highly functionalized bacterial diterpenoids of ent-kauranol and ent-atiserene biosynthetic origin. C7 oxidation in the B-ring plays a key biosynthetic role in generating structural complexity known for ent-kaurane and ent-atisane derived diterpenoids. While all three oxidation patterns, α-hydroxyl, β-hydroxyl, and ketone, at C7 are seen in both the ent-kaurane and ent-atisane derived diterpenoids, their biosynthetic origins remain largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • There is growing interest in diversifying polyketides, which are bioactive molecules, by engineering the acyltransferase (AT) domains in polyketide synthases (PKSs) to incorporate non-natural extender units.
  • Past attempts have mostly relied on naturally promiscuous ATs or those in terminal modules, which limits the study of ATs with lower promiscuity and their interactions with downstream domains.
  • Recent research on the pikromycin PKS explored the substrate preferences of its last two modules, leading to successful engineering of specificity for non-natural derivatives and revealing new metabolites influenced by downstream processing, paving the way for future polyketide advancements.
View Article and Find Full Text PDF

A large portion of natural products are biosynthesized by the polyketide synthase and non-ribosomal peptide synthetase enzymatic assembly lines. Recent advancements in the study of these megasynthases has led to many new examples that demonstrate the production of non-natural natural products. The field is likely nearing the ability to design and build new biosynthetic pathways de novo.

View Article and Find Full Text PDF

U.S. patents directed to stem cell technologies have generated a high degree of interest and controversy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqh349ojedba2envi80knc36pijr9d5vf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once