Natural disturbances are critical ecosystem processes, with both ecological and socioeconomic benefits and disadvantages. Large herbivores are natural disturbances that have removed plant biomass for millions of years, although herbivore influence likely has declined during the past thousands of years corresponding with extinctions and declines in distributions and abundances of most animal species. Nonetheless, the conventional view, particularly in eastern North America, is that herbivory by large wild herbivores is at unprecedented levels, resulting in unnatural damage to forests.
View Article and Find Full Text PDFHistorical extirpations have resulted in depauperate large herbivore assemblages in many northern forests. In eastern North America, most forests are inhabited by a single wild ungulate species, white-tailed deer (Odocoileus virginianus), and relationships between deer densities and impacts on forest regeneration are correspondingly well documented. Recent recolonizations by moose (Alces americanus) in northeastern regions complicate established deer density thresholds and predictions of browsing impacts on forest dynamics because size and foraging differences between the two animals suggest a lack of functional redundancy.
View Article and Find Full Text PDFUngulates are leading drivers of plant communities worldwide, with impacts linked to animal density, disturbance and vegetation structure, and site productivity. Many ecosystems have more than one ungulate species; however, few studies have specifically examined the combined effects of two or more species on plant communities. We examined the extent to which two ungulate browsers (moose [Alces americanus]) and white-tailed deer [Odocoileus virginianus]) have additive (compounding) or compensatory (opposing) effects on herbaceous layer composition and diversity, 5-6 years after timber harvest in Massachusetts, USA.
View Article and Find Full Text PDFThe mid-Holocene decline of eastern hemlock is widely viewed as the sole prehistorical example of an insect- or pathogen-mediated collapse of a North American tree species and has been extensively studied for insights into pest-host dynamics and the consequences to terrestrial and aquatic ecosystems of dominant-species removal. We report paleoecological evidence implicating climate as a major driver of this episode. Data drawn from sites across a gradient in hemlock abundance from dominant to absent demonstrate: a synchronous, dramatic decline in a contrasting taxon (oak); changes in lake sediments and aquatic taxa indicating low water levels; and one or more intervals of intense drought at regional to continental scales.
View Article and Find Full Text PDF