Selective activation of peripheral cannabinoid CB1 receptors has the potential to become a valuable therapy for chronic pain conditions as long as central nervous system effects are attenuated. A new class of cannabinoid ligands was rationally designed from known aminoalkylindole agonists and showed good binding and functional activities at human CB1 and CB2 receptors. This has led to the discovery of a novel CB1/CB2 dual agonist, naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (13), which displays good oral bioavailability, potent antihyperalgesic activity in animal models, and limited brain penetration.
View Article and Find Full Text PDFVanilloid receptor 1 (VR1, TRPV1) is a cation-selective ion channel that is expressed on primary afferent neurons and is upregulated following inflammation and nerve damage. Blockers of this channel may have utility in the treatment of chronic nociceptive and neuropathic pain. Here, we describe the optimization from a high throughput screening hit, of a series of 6-aryl-7-isopropylquinazolinones that are TRPV1 antagonists in vitro.
View Article and Find Full Text PDFThe inducible kinin B1 receptor is emerging as an attractive therapeutic target for the treatment of pain and inflammation. Although many studies described its regulation at the transcriptional level, little is known about the maturation of the B1 receptor. Using two human embryonic kidney (HEK) 293 cell lines stably expressing rabbit B1 receptors tagged with the yellow fluorescent protein at the C terminus (B1R-YFP) or the N-terminal myc epitope (myc-B1R), we showed that receptors are mainly retained in a perinuclear compartment and detectable as low-glycosylated species under control conditions.
View Article and Find Full Text PDFThe bradykinin B(1) receptor is rapidly induced after inflammation or tissue trauma and appears to play an important role in the maintenance of hyperalgesia in inflammatory conditions. Here, we describe the optimization process to identify novel, potent non-peptide human B(1) receptor antagonists based on a 2-alkylamino-5-sulfamoylbenzamide core. Optimized derivatives are selective, functional B(1) antagonists with low nanomolar affinity and exhibit oral bioavailability in animals.
View Article and Find Full Text PDFAnalgesic and anti-inflammatory applications for non-peptide bradykinin (BK) B2 receptor antagonists have been documented in rats. However, very large species differences in affinity were also noted within this class of drugs, making the preclinical development of relevant drugs difficult. Bradyzide is a potent antagonist at the rat B2 receptor, but a weak one at the human receptor; a series of analogues in which the diphenylmethyl moiety of this drug has been substituted with dibenzosuberane have been reported to gain potency at the human B2 receptor, with some loss of affinity at the rat receptor.
View Article and Find Full Text PDFThe 1-(2-nitrophenyl)thiosemicarbazide (TSC) derivative, (S)-1-[4-(4-benzhydrylthiosemicarbazido)-3-nitrobenzenesulfonyl]pyrrolidine-2-carboxylic acid [2-[(2-dimethylaminoethyl)methylamino]ethyl]amide (bradyzide; (S)-4), was recently disclosed as a novel, potent, orally active nonpeptide bradykinin (BK) B2 receptor antagonist. The compound inhibited the specific binding of [3H]BK to NG108-15 cell membrane preparations (rodent neuroblastoma-glioma) expressing B2 receptors with a K(i) of 0.5 +/- 0.
View Article and Find Full Text PDF