Publications by authors named "Edward J Steele"

The reverse transcriptase (RT) model of immunoglobulin (Ig) somatic hypermutation (SHM) has received insufficient scientific attention. This is understandable given that DNA deamination mediated by activation-induced deaminase (AID), the initiating step of Ig SHM, has dominated experiments since 2002. We summarise some key history of the RT Ig SHM model dating to 1987.

View Article and Find Full Text PDF

The primary global response to the SARS-CoV-2 pandemic has been to bring to the clinic as rapidly as possible a number of vaccines that are predicted to enhance immunity to this viral infection. While the rapidity with which these vaccines have been developed and tested (at least for short-term efficacy and safety) is commendable, it should be acknowledged that this has occurred despite the lack of research into, and understanding of, the immune elements important for natural host protection against the virus, making this endeavor a somewhat unique one in medical history. In contrast, as pointed out in the review below, there were already important past observations that suggested that respiratory infections at mucosal surfaces were susceptible to immune clearance by mechanisms not typical of infections caused by systemic (blood-borne) pathogens.

View Article and Find Full Text PDF

The SARS-CoV-2 epidemic infections in Australia during 2020 were small in number in epidemiological terms and are well described. The SARS-CoV-2 genomic sequence data of many infected patients have been largely curated in a number of publicly available databases, including the corresponding epidemiological data made available by the Victorian Department of Health and Human Services. We have critically analysed the available SARS-CoV-2 haplotypes and genomic sequences in the context of putative deficits in innate immune APOBEC and ADAR deaminase anti-viral responses.

View Article and Find Full Text PDF

Somatic hypermutation at antibody loci affects both deoxyadenosine-deoxythymidine (A/T) and deoxycytidine-deoxyguanosine (C/G) pairs. Deamination of C to deoxyuridine (U) by activation-induced deaminase (AID) explains how mutation at C/G pairs is potentiated. Mutation at A/T pairs is triggered during the initial stages of repair of AID-generated U lesions and occurs through an as yet unknown mechanism in which polymerase η has a major role.

View Article and Find Full Text PDF

The origins and global spread of two recent, yet quite different, pandemic diseases is discussed and reviewed in depth: Candida auris, a eukaryotic fungal disease, and COVID-19 (SARS-CoV-2), a positive strand RNA viral respiratory disease. Both these diseases display highly distinctive patterns of sudden emergence and global spread, which are not easy to understand by conventional epidemiological analysis based on simple infection-driven human- to-human spread of an infectious disease (assumed to jump suddenly and thus genetically, from an animal reservoir). Both these enigmatic diseases make sense however under a Panspermia in-fall model and the evidence consistent with such a model is critically reviewed.

View Article and Find Full Text PDF

A range of astronomical observations are shown to be in accord with the theory of cometary panspermia. This theory posits that comets harbor a viable biological component in the form of bacteria and viruses that led to origin and evolution of life on Earth. The data includes (1) infrared, visual and ultraviolet spectra of interstellar dust, (2) infrared spectra of the dust released from comet Halley in 1986, (3) infrared spectra of comet Hale-Bopp in 1997, (4) near and mid-infrared spectra of comet Tempel I in 2005, (5) the discovery of an amino acid and degradation products attributable to biology in the material recovered from the Stardust Mission in 2009, (6) jets from comet Lovejoy showing both a sugar and Ethyl alcohol and finally, (7) a diverse set of data that has emerged from the Rosetta mission.

View Article and Find Full Text PDF

The theory of cometary panspermia argues that life cannot have originated on Earth in the time available. It must have an ultimate, but still undiscovered cosmological source. The origin of life remains an open question.

View Article and Find Full Text PDF

In this Chapter we discuss the various mechanisms that are available for the possible transfer of cosmic microbial living systems from one cosmic habitat to another. With the 100 or so habitable planets that are now known to exist in our galaxy alone transfers of cometary dust carrying life including fragments of icy planetoids/asteroids would be expected to occur on a routine basis. It is thus easy to view the galaxy as a single connected "biosphere" of which our planet Earth is a minor component.

View Article and Find Full Text PDF

A wide range of evidence for pointing to our cosmic origins is close to the point of being overwhelming. Yet the long-entrenched paradigm of Earth-centered biology appears to prevail in scientific culture. A matter of crucial importance is to carry out a decisive experiment that is long overdue-establishing empirically beyond any doubt that extraterrestrial microbiota reaches the surface of the Earth at the present day.

View Article and Find Full Text PDF

This current volume is, in many ways, a 2020 update to the important 1999-2000 compendium by Sir Fred Hoyle and Professor N. Chandra Wickramasinghe's "Astronomical Origins of life: Steps towards Panspermia." The emerging new paradigm of biology that connects life on Earth with the wider cosmos is covered in considerable depth showing that terrestrial biological evolution is best understood as a cosmically derived habitat and an interconnected genetic system.

View Article and Find Full Text PDF

Somatic mosaicism is a normal occurrence during development in the tissues and organs. As part of establishing a "healthy population "(HP) background or base-line, we investigated whether such mosaicism can be routinely detected in the circulating DNA secured from a rigorously designed healthy human liquid biopsy clinical trial (saliva, blood). We deployed next generation (NG) whole exome sequencing (WES) at median exome coverage rates of 97.

View Article and Find Full Text PDF

The mechanism of (CAG)n repeat generation, and related expandable repeat diseases in non-dividing cells, is currently understood in terms of a DNA template-based DNA repair synthesis process involving hairpin stabilized slippage, local error-prone repair via MutSβ (MSH2-MSH3) hairpin protective stabilization, then nascent strand extension by DNA polymerases-β and -δ. We advance a very similar slipped hairpin-stabilized model involving MSH2-MSH3 with two key differences: the copying template may also be the nascent pre-mRNA with the repair pathway being mediated by the Y-family error-prone enzymes DNA polymerase-η and DNA polymerase-κ acting as reverse transcriptases. We argue that both DNA-based and RNA-based mechanisms could well be activated in affected non-dividing brain cells .

View Article and Find Full Text PDF

What is the evolutionary mechanism for the TCR-MHC-conserved interaction? We extend Dembic's model (Dembic Z. In, Scand J Immunol e12806, 2019) of thymus positive selection for high-avidity anti-self-MHC Tregs among double (CD4 + CD8+)-positive (DP) developing thymocytes. This model is based on competition for self-MHC (+ Pep) complexes presented on cortical epithelium.

View Article and Find Full Text PDF

We review the main lines of evidence (molecular, cellular and whole organism) published since the 1970s demonstrating Lamarckian Inheritance in animals, plants and microorganisms viz. the transgenerational inheritance of environmentally-induced acquired characteristics. The studies in animals demonstrate the genetic permeability of the soma-germline Weismann Barrier.

View Article and Find Full Text PDF

A new and diverse range of somatic mutation signatures are observed in late-stage cancers, but the underlying reasons are not fully understood. We advance a "combinatorial association model" for deaminase binding domain (DBD) diversification to explain the generation of previously observed cancer-progression associated mutation signatures. We also propose that changes in the polarization of tumour-associated macrophages (TAMs) are accompanied by the expression of deaminases with a new and diverse range of DBDs, and thus accounting for the generation of new somatic mutation signatures.

View Article and Find Full Text PDF

We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ∼500 Ma.

View Article and Find Full Text PDF

The evidence for the reverse transcriptase mechanism of somatic hypermutation is substantial and multifactorial. In this 60th anniversary year of the publication of Sir MacFarlane Burnet's Clonal Selection Theory, the evidence is briefly reviewed and updated.

View Article and Find Full Text PDF

Extreme marbling or intramuscular deposition of lipid is associated with Wagyu breeds and is therefore assumed to be largely inherited. However, even within 100% full blood Wagyu prepared under standard conditions, there is unpredictable scatter of the degree of marbling. Here, we evaluate melting temperature ( ) of intramuscular fat as an alternative to visual scores of marbling.

View Article and Find Full Text PDF

Traditional analyses of a QTL on Bota 19 implicate a surfeit of candidates, but each is of marginal significance in explaining the deposition of healthy, low melting temperature fat within marbled muscle of Wagyu cattle. As an alternative approach, we have used genomic, multigenerational segregation to identify 14 conserved, ancestral 20 Mb haplotypes. These determine the degree and rate of marbling in Wagyu and other breeds of cattle.

View Article and Find Full Text PDF

The implications are discussed of recently published biochemical studies on ADAR-mediated A-to-I DNA and RNA deamination at RNA:DNA hybrids. The significance of these data are related to previous work on strand-biased and codon-context mutation signatures in B lymphocytes and cancer genomes. Those studies have established that there are two significant strand biases at A:T and G:C base pairs, A-site mutations exceed T-site mutations (A>>T) by 2.

View Article and Find Full Text PDF

For 30 years two general mechanisms have competed to explain somatic hypermutation of immunoglobulin (Ig) genes. The first, the DNA-based model, is focused only on DNA substrates. The modern form is the Neuberger "DNA Deamination Model" based on activation-induced cytidine deaminase (AID) and short-patch error-prone DNA repair by DNA Polymerase-η operating around AID C-to-U lesions.

View Article and Find Full Text PDF