Publications by authors named "Edward J Raynor"

Ruminants produce one-third of the anthropogenic methane ( ) emissions worldwide, and 47% of the CH emissions result from ruminants under grazing conditions. However, there is limited information regarding the appropriate number of visits to accurately determine enteric CH emissions using the automated head-chamber system () from growing beef cattle under intensive grazing conditions. Data from one experiment were analyzed to determine the number of visits to assess gas flux (CH, carbon dioxide [ ], and oxygen [ ]) from Angus-crossbreed steers grazing in a pivot-irrigated improved pasture.

View Article and Find Full Text PDF
Article Synopsis
  • * Steers were divided into four treatment groups based on whether they received the growth-hormone implant or tannin supplement.
  • * Results showed no significant effects of either treatment on body weight, average daily gain, or methane emissions, though some tendencies were noted regarding dietary intake and blood urea nitrogen levels.
View Article and Find Full Text PDF

Rangelands are the dominant land use across a broad swath of central North America where they span a wide gradient, from <350 to >900 mm, in mean annual precipitation. Substantial efforts have examined temporal and spatial variation in aboveground net primary production (ANPP) to precipitation (PPT) across this gradient. In contrast, net secondary productivity (NSP, e.

View Article and Find Full Text PDF

The objective of this experiment was to demonstrate the effectiveness of a commercially available tannin product (Silvafeed ByPro, 70% tannic acid) as an enteric methane (CH) mitigation and preventative animal health strategy in Holstein heifers (BW = 219 ± 17 kg; 9 mo), reared under organic production system requirements. Twenty heifers were randomly assigned to one of four commercial tannin supplementation treatments as follows: 0% (0 g/hd/d; CON), 0.075% (~5 g/hd/d; LOW), 0.

View Article and Find Full Text PDF

Rangeland ecosystems worldwide are characterized by a high degree of uncertainty in precipitation, both within and across years. Such uncertainty creates challenges for livestock managers seeking to match herbivore numbers with forage availability to prevent vegetation degradation and optimize livestock production. Here, we assess variation in annual large herbivore production (LHP, kg/ha) across multiple herbivore densities over a 78-yr period (1940-2018) in a semiarid rangeland ecosystem (shortgrass steppe of eastern Colorado, USA) that has experienced several phase changes in global-level sea surface temperature (SST) anomalies, as measured by the Pacific Decadal Oscillation (PDO) and the El Niño-Southern Oscillation (ENSO).

View Article and Find Full Text PDF

In the context of roadside revegetation activities in rural regions, revegetation objectives commonly are to establish plant communities with a diversity of species that would otherwise be absent on the predominantly agricultural landscape. To determine the efficacy of revegetation in providing plant communities of high biodiversity value, we quantified species richness, floristic quality, and success in seeding efforts. We evaluated the outcome of roadside seedings conducted by Nebraska Department of Transportation (NDOT) for five NDOT landscape regions spanning Nebraska.

View Article and Find Full Text PDF

Understanding the spatial distribution of forage quality is important to address critical research questions in grassland science. Due to its efficiency and accuracy, there has been a widespread interest in mapping the canopy vegetation characteristics using remote sensing methods. In this study, foliar chlorophylls, carotenoids, and nutritional elements across multiple tallgrass prairie functional groups were quantified at the leaf level using hyperspectral analysis in the region of 470-800 nm, which was expected to be a precursor to further remote sensing of canopy vegetation quality.

View Article and Find Full Text PDF

Better understanding animal ecology in terms of thermal habitat use has become a focus of ecological studies, in large part due to the predicted temperature increases associated with global climate change. To further our knowledge on how ground-nesting endotherms respond to thermal landscapes, we examined the thermal ecology of Sharp-tailed Grouse (Tympanuchus phasianellus) during the nesting period. We measured site-specific iButton temperatures (TiB) and vegetation characteristics at nest sites, nearby random sites, and landscape sites to assess thermal patterns at scales relevant to nesting birds.

View Article and Find Full Text PDF

Understanding behavioral strategies employed by animals to maximize fitness in the face of environmental heterogeneity, variability, and uncertainty is a central aim of animal ecology. Flexibility in behavior may be key to how animals respond to climate and environmental change. Using a mechanistic modeling framework for simultaneously quantifying the effects of habitat preference and intrinsic movement on space use at the landscape scale, we investigate how movement and habitat selection vary among individuals and years in response to forage quality-quantity tradeoffs, environmental conditions, and variable annual climate.

View Article and Find Full Text PDF

Recent models suggest that herbivores optimize nutrient intake by selecting patches of low to intermediate vegetation biomass. We assessed the application of this hypothesis to plains bison (Bison bison) in an experimental grassland managed with fire by estimating daily rates of nutrient intake in relation to grass biomass and by measuring patch selection in experimental watersheds in which grass biomass was manipulated by prescribed burning. Digestible crude protein content of grass declined linearly with increasing biomass, and the mean digestible protein content relative to grass biomass was greater in burned watersheds than watersheds not burned that spring (intercept; F 1,251 = 50.

View Article and Find Full Text PDF