Bone marrow aspirate concentrate (BMC) is commonly used as a therapeutic agent to resolve orthopedic injuries, using its unique cellularity to reduce inflammation and prime the region for repair. The aspiration of the bone marrow is performed using either sodium citrate (SC) or heparin sodium (HS) as an anticoagulant and processed via centrifugation to concentrate the cellular constituents. To date, the consideration of the impact of the two commonly used anticoagulants on the mesenchymal stem/stromal cell (MSC) population has been overlooked.
View Article and Find Full Text PDFPurpose: The use of bone marrow aspirate (BMA) and bone marrow aspirate concentrate (BMC) in the treatment of inflammatory orthopedic conditions has become a common practice. The therapeutic effect of BMA/BMC is thought to revolve primarily around the mesenchymal stem/stromal cell (MSC) population residing within the nucleated cell fraction. MSCs have the unique ability to respond to site of injury via the secretion of immunomodulating factors, resolving inflammation in diseased joints.
View Article and Find Full Text PDFBackground Aims: Platelet-rich plasma (PRP) and bone marrow aspirate are commonly used in orthobiologics for their anti-inflammatory, anabolic/regenerative and immunomodulatory characteristics via platelet degranulation and cell secretions. Although platelets are derived from megakaryocytes in the bone marrow, no attention has been paid to the potential benefits of bone marrow platelets and whether their contents differ from aging platelets in peripheral blood.
Methods: In the present study, leukocyte-poor peripheral blood-derived platelets in plasma (LPP) and leukocyte-poor bone marrow platelets in plasma (BMP) were prepared from six donors, activated with calcium chloride, incubated and sampled at day 0, day 3 and day 6.