Lung cancer, the most common cause of cancer-related death in the United States, requires advanced intraoperative detection methods to improve evaluation of surgical margins. In this study we employed DDAO-arachidonate (DDAO-A), a phospholipase A2 (PLA2) activatable fluorophore, designed for the specific optical identification of lung cancers in real-time during surgery. The fluorescence activation of DDAO-A by porcine sPLA2 was tested in various liposomal formulations, with 100 nm extruded EggPC showing the best overall characteristics.
View Article and Find Full Text PDFPurpose: Intraoperative molecular imaging (IMI) uses tumor-targeted optical contrast agents to improve identification and clearance of cancer. Recently, a probe has been developed that only fluoresces when activated in an acidic pH, which is common to many malignancies. We report the first multicenter Phase 2 trial of a pH-activatable nanoprobe (pegsitacianine, ONM-100) for IMI of lung cancer.
View Article and Find Full Text PDFBackground: Elevated choline kinase alpha (ChoK) is observed in most solid tumours including glioblastomas (GBM), yet until recently, inhibitors of ChoK have demonstrated limited efficacy in GBM models. Given that hypoxia is associated with GBM therapy resistance, we hypothesised that tumour hypoxia could be responsible for such limitations. We therefore evaluated in GBM cells, the effect of hypoxia on the function of JAS239, a potent ChoK inhibitor.
View Article and Find Full Text PDFSilver sulfide nanoparticles (AgS-NP) hold promise for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA), and photothermal therapy (PTT). However, their NIR absorbance is relatively low, and previous formulations are synthesized using toxic precursors under harsh conditions and are not effectively cleared due to their large size. Herein, sub-5 nm AgS-NP are synthesized and encapsulated in biodegradable, polymeric nanoparticles (AgPCPP).
View Article and Find Full Text PDFBackground: Intraoperative molecular imaging (IMI) uses tumor-targeted optical contrast agents to improve identification and clearance of cancer during surgery. Recently, pH-activatable contrast agents have been developed but none has been tested in lung cancer. Here, we report the successful clinical translation of pegsitacianine (ONM-100), a pH-activatable nanoprobe, for fluorescence-guided lung cancer resection.
View Article and Find Full Text PDFSignificance: This third biennial intraoperative molecular imaging (IMI) conference shows how optical contrast agents have been applied to develop clinically significant endpoints that improve precision cancer surgery.
Aim: National and international experts on IMI presented ongoing clinical trials in cancer surgery and preclinical work. Previously known dyes (with broader applications), new dyes, novel nonfluorescence-based imaging techniques, pediatric dyes, and normal tissue dyes were discussed.
Changes in glioblastoma (GBM) metabolism was investigated in response to JAS239, a choline kinase inhibitor, using MRS. In addition to the inhibition of phosphocholine synthesis, we investigated changes in other key metabolic pathways associated with GBM progression and treatment response. Three syngeneic rodent models of GBM were used: F98 (N = 12) and 9L (N = 8) models in rats and GL261 (N = 10) in mice.
View Article and Find Full Text PDFIntraoperative molecular imaging (IMI) has recently emerged as an important tool in the armamentarium of surgical oncologists. IMI allows real-time assessment of oncologic resection quality, margin assessment, and occult disease detection during real-time surgery. Numerous tracers have now been developed for use in IMI-guided tissue sampling.
View Article and Find Full Text PDFObjective: To assess the feasibility and effectiveness of indocyanine green (ICG) for image-guided resection of head and neck cancer (HNC).
Data Sources: PubMed, Embase, and Scopus databases.
Review Methods: Searches were conducted from database inception to February 2022.
Background: Early detection and complete resection are important prognostic factors for esophageal cancer (EC). Intraoperative molecular imaging (IMI) using tumor-targeted tracers is effective in many cancer types. However, there are no EC-specific IMI tracers.
View Article and Find Full Text PDFBackground: Intraoperative molecular imaging (IMI) with folate-targeted NIR tracers has been shown to improve lesion localization in more than 80% of lung adenocarcinomas. However, mucinous adenocarcinomas (MAs) and invasive mucinous adenocarcinomas (IMAs) of the lung, which are variants of adenocarcinoma, appear to have decreased fluorescence despite appropriate folate receptor expression on the tumor surface. We hypothesized that the etiology may be related to light excitation and emission through non-Newtonian fluid (mucin) produced by goblet and columnar cancer cells.
View Article and Find Full Text PDFMol Imaging Biol
February 2023
Purpose: Fluorescence-guided surgery using tumor-targeted contrast agents has been developed to improve the completeness of oncologic resections. Quenched activity-based probes that fluoresce after covalently binding to tumor-specific enzymes have been proposed to improve specificity, but none have been tested in humans. Here, we report the successful clinical translation of a cathepsin activity-based probe (VGT-309) for fluorescence-guided surgery.
View Article and Find Full Text PDFCancers (Basel)
February 2022
To investigate the utility of DCE-MRI derived pharmacokinetic parameters in evaluating tumour haemodynamic heterogeneity and treatment response in rodent models of glioblastoma, imaging was performed on intracranial F98 and GL261 glioblastoma bearing rodents. Clustering of the DCE-MRI-based parametric maps (using Tofts, extended Tofts, shutter speed, two-compartment, and the second generation shutter speed models) was performed using a hierarchical clustering algorithm, resulting in areas with poor fit (reflecting necrosis), low, medium, and high valued pixels representing parameters Ktrans, ve, Kep, vp, τi and Fp. There was a significant increase in the number of necrotic pixels with increasing tumour volume and a significant correlation between ve and tumour volume suggesting increased extracellular volume in larger tumours.
View Article and Find Full Text PDFBackground: Pulmonary ground glass opacities (GGOs) are early-stage adenocarcinoma spectrum lesions that are not easily palpable. Challenges in localizing GGOs during intraoperative pathology can lead to imprecise diagnoses and additional time under anesthesia. To improve localization of GGOs during frozen section diagnosis, we evaluated a novel technique, 3-dimensional near-infrared specimen mapping (3D-NSM).
View Article and Find Full Text PDFObjective: Metastases are the most common intracranial malignancies and complete resection can provide relief of neurological symptoms and reduce recurrence. The authors' prospective pilot study in 2017 demonstrated promising results for the application of high-dose, delayed imaging of indocyanine green (ICG), known as second window ICG (SWIG), in patients undergoing surgery for brain metastases. In this prospective cohort study, the authors evaluated intraoperative imaging and clinical outcomes of treatment using SWIG.
View Article and Find Full Text PDFPurpose: Fluorescence-guided-surgery offers intraoperative visualization of neoplastic tissue. Delta-aminolevulinic acid (5-ALA), which targets enzymatic abnormality in neoplastic cells, is the only approved agent for fluorescence-guided neurosurgery. More recently, we described Second Window Indocyanine Green (SWIG) which targets neoplastic tissue through enhanced vascular permeability.
View Article and Find Full Text PDFBackground: Complete pulmonary metastasectomy for sarcoma metastases provides patients an opportunity for long-term survival and possible cure. Intraoperative localization of preoperatively identified metastases and identification of occult lesions can be challenging. In this trial, we evaluated the efficacy of near-infrared (NIR) intraoperative imaging using second window indocyanine green during metastasectomy to identify known metastases and to detect occult nodules.
View Article and Find Full Text PDFLipids represent a diverse array of molecules essential to the cell's structure, defense, energy, and communication. Lipid metabolism can often become dysregulated during tumor development. During cancer therapy, targeted inhibition of cell proliferation can likewise cause widespread and drastic changes in lipid composition.
View Article and Find Full Text PDFBackground: Near-infrared (NIR) imaging using the second time window of indocyanine green (ICG) allows localization of pulmonary, pleural, and mediastinal malignancies during surgery. Based on empirical evidence, we hypothesized that different histologic tumor types fluoresce optimally at different ICG doses.
Study Design: Patients with thoracic tumors biopsy-proven or suspicious for malignancy were enrolled in an NIR imaging clinical trial.
Choline kinase α (ChoKα) is an enzyme that is upregulated in many types of cancer and has been shown to be tumorigenic. As such, it makes a promising target for inhibiting tumor growth. Though there have been several inhibitors synthesized for ChoKα, not all of them demonstrate the same efficacy in vivo, though the reasons behind this difference in potency are not clear.
View Article and Find Full Text PDFWe have used cell culture of astrocytes aligned within microchannels to investigate calcium effects on primary cilia morphology. In the absence of calcium and in the presence of flow of media (10 μL.s) the majority (90%) of primary cilia showed reversible bending with an average curvature of 2.
View Article and Find Full Text PDFObjective: To determine if intraoperative molecular imaging (IMI) can improve detection of malignant pulmonary nodules.
Background: 18-Fluorodeoxyglucose positron emission tomography (PET) is commonly utilized in preoperative assessment of patients with solid malignancies; however, false negatives and false positives remain major limitations. Using patients with pulmonary nodules as a study model, we hypothesized that IMI with a folate receptor targeted near-infrared contrast agent (OTL38) can improve malignant pulmonary nodule identification when combined with PET.
Choline kinase alpha (ChoKα) overexpression is associated with an aggressive tumor phenotype. ChoKα inhibitors induce apoptosis in tumors, however validation of their specificity is difficult in vivo. We report the use of optical imaging to assess ChoKα status in cells and in vivo using JAS239, a carbocyanine-based ChoKα inhibitor with inherent near infrared fluorescence.
View Article and Find Full Text PDF