Publications by authors named "Edward J Buskey"

Article Synopsis
  • Tidal wetlands can absorb greenhouse gases, but methane emissions can vary due to environmental factors and human activities.
  • Land managers require detailed maps of methane properties in these wetlands for effective restoration and greenhouse gas inventories, yet current sampling methods don't align well with broader mapping products.
  • Research involved sampling 27 tidal wetlands, revealing that sulfate concentration is the strongest predictor of methane levels, while salinity also plays a significant role; future studies should focus on understanding local environmental influences on methane variation.
View Article and Find Full Text PDF

Petroleum hydrocarbons are being released into the marine environment continuously. They will undergo weathering and may eventually be biodegraded by bacteria and other microbes. While nanoplankton (2-20 μm) are the major consumers of marine bacteria, their effect on the process of biodegradation of oil hydrocarbons is still debated.

View Article and Find Full Text PDF

Despite the advances in safety technology and the improved implementation of precautionary measures, crude oil pollution has been occurring in the oceans globally. The water accommodated fraction (WAF) of crude oil and chemical dispersant are hypothesized to cause sub-lethal adverse effects on marine protists that are pivotal consumers of primary production. Exposure experiments were conducted to investigate the effects of crude oil and dispersant pollutants on the growth and grazing, separately, of protozoa species in cultures.

View Article and Find Full Text PDF

Characterizing the nature and effects of oil released into the marine environment is very challenging. It is generally recognized that "environmentally relevant" conditions for exposure involve a range of temporal and spatial conditions, a range of exposure pathways (e.g.

View Article and Find Full Text PDF

Microzooplankton (<200 μm) are essential intermediates between primary production and organisms at the higher trophic levels. Their ecological functions could be substantially affected by crude oil pollution. A natural plankton community was exposed to 10 μL L of chemically dispersed crude oil (DOil) in outdoor mesocosms for 7 days, with control (Ctrl) mesocosms set up for comparison.

View Article and Find Full Text PDF

The Deepwater Horizon oil spill of 2010 brought the ecology and health of the Gulf of Mexico to the forefront of the public's and scientific community's attention. Not only did we need a better understanding of how this oil spill impacted the Gulf of Mexico ecosystem, but we also needed to apply this knowledge to help assess impacts from perturbations in the region and guide future response actions. Phytoplankton represent the base of the food web in oceanic systems.

View Article and Find Full Text PDF

The association between phytoplankton blooms and oil spills is still controversial despite numerous studies. Surprisingly, to date, there have been no studies on the effect of bacterial communities (BCs) exposed to crude oil on phytoplankton growth, even though crude oil changes BCs, which can then affect phytoplankton growth and species composition. Co-culture with crude oil-exposed BCs significantly stimulated the growth of Prorocentrum texanum in the laboratory.

View Article and Find Full Text PDF

This study investigates the development of swimming abilities and its relationship with morphology, growth, and nourishment of reared paralarvae from hatching to 60 days of age. Paralarvae (2.5-11 mm mantle length - ML) were videotaped, and their behavior quantified throughout development using computerized motion analysis.

View Article and Find Full Text PDF

After oil spills and dispersant applications the formation of red tides or harmful algal blooms (HABs) has been observed, which can cause additional negative impacts in areas affected by oil spills. However, the link between oil spills and HABs is still unknown. Here, we present experimental evidence that demonstrates a connection between oil spills and HABs.

View Article and Find Full Text PDF

Field data from the first several days after an oil spill is rare but crucial for our understanding of a spill's impact on marine microbiota given their short generation times. Field data collected within days of the Texas City "Y" oil spill showed that exposure to crude oil can rapidly imbalance populations of marine microbiota, which leads to the proliferation of more resistant organisms. Vibrionales bacteria were up to 48 times higher than background concentrations at the most impacted sites and populations of the dinoflagellate Prorocentrum texanum increased significantly as well.

View Article and Find Full Text PDF

Ecosystem function measurements can enhance our understanding of nitrogen (N) delivery in coastal catchments across river and estuary ecosystems. Here, we contrast patterns of N cycling and export in two rivers, one heavily influenced by wastewater treatment plants (WWTP), in a coastal catchment of south Texas. We measured N export from both rivers to the estuary over 2 yr that encompass a severe drought, along with detailed mechanisms of N cycling in river, tidal river, and two estuary sites during prolonged drought.

View Article and Find Full Text PDF

Rapid conduction in myelinated nerves keeps distant parts of large organisms in timely communication. It is thus surprising to find myelination in some very small organisms. Calanoid copepods, while sharing similar body plans, are evenly divided between myelinate and amyelinate taxa.

View Article and Find Full Text PDF

Phytoplankton sinking is an important property that can determine community composition in the photic zone and material loss to the deep ocean. To date, studies of diatom suspension have relied on bulk measurements with assumptions that bulk rates adequately capture the essential characteristics of diatom sinking. However, recent work has illustrated that individual diatom sinking rates vary considerably from the mean bulk rate.

View Article and Find Full Text PDF

Gelatinous zooplankton are known for their capacity to excrete copious amounts of mucus that can be utilized by other organisms. The release of mucus is exacerbated by stressful conditions. Despite the recognized importance of cnidarian mucus to production and material flux in marine ecosystems, the role of gelatinous zooplankton in influencing the fate of oil spills is unknown.

View Article and Find Full Text PDF

Toxic effects of petroleum to marine zooplankton have been generally investigated using dissolved petroleum hydrocarbons and in the absence of sunlight. In this study, we determined the influence of natural ultraviolet B (UVB) radiation on the lethal and sublethal toxicity of dispersed crude oil to naupliar stages of the planktonic copepods Acartia tonsa, Temora turbinata and Pseudodiaptomus pelagicus. Low concentrations of dispersed crude oil (1 μL L(-1)) caused a significant reduction in survival, growth and swimming activity of copepod nauplii after 48 h of exposure.

View Article and Find Full Text PDF

We investigated and quantified defecation rates of crude oil by 3 species of marine planktonic copepods (Temora turbinata, Acartia tonsa, and Parvocalanus crassirostris) and a natural copepod assemblage after exposure to mechanically or chemically dispersed crude oil. Between 88 and 100% of the analyzed fecal pellets from three species of copepods and a natural copepod assemblage exposed for 48 h to physically or chemically dispersed light crude oil contained crude oil droplets. Crude oil droplets inside fecal pellets were smaller (median diameter: 2.

View Article and Find Full Text PDF

We describe an automated, volumetric particle image velocimetry (PIV) and tracking method that measures time-resolved, 3D zooplankton trajectories and surrounding volumetric fluid velocity fields simultaneously and non-intrusively. The method is demonstrated for groups of copepods flowing past a wall-mounted cylinder. We show that copepods execute escape responses when subjected to a strain rate threshold upstream of a cylinder, but the same threshold range elicits no escape responses in the turbulent wake downstream.

View Article and Find Full Text PDF

Ciliates can form an important link between the microbial loop and higher trophic levels primarily through consumption by copepods. This high predation pressure has resulted in a number of ciliate species developing rapid escape swimming behaviour. Several species of these escaping ciliates also possess a long contractile tail for which the functionality remains unresolved.

View Article and Find Full Text PDF

Although planktonic protozoans are likely to interact with dispersed crude oil after a spill, protozoan-mediated processes affecting crude oil pollution in the sea are still not well known. Here, we present the first evidence of ingestion and defecation of physically or chemically dispersed crude oil droplets (1-86 μm in diameter) by heterotrophic dinoflagellates, major components of marine planktonic food webs. At a crude oil concentration commonly found after an oil spill (1 μL L(-1)), the heterotrophic dinoflagellates Noctiluca scintillans and Gyrodinium spirale grew and ingested ~0.

View Article and Find Full Text PDF

In the last decade, the northern Arabian Sea has witnessed a radical shift in the composition of winter phytoplankton blooms, which previously comprised mainly of diatoms, the unicellular, siliceous photosynthetic organisms favoured by nutrient-enriched waters from convective mixing. These trophically important diatom blooms have been replaced by widespread blooms of a large, green dinoflagellate, Noctiluca scintillans, which combines carbon fixation from its chlorophyll-containing endosymbiont with ingestion of prey. Here, we report that these massive outbreaks of N.

View Article and Find Full Text PDF

Our knowledge of the lethal and sublethal effects of dispersants and dispersed crude oil on meroplanktonic larvae is limited despite the importance of planktonic larval stages in the life cycle of benthic invertebrates. We determined the effects of Light Louisiana Sweet crude oil, dispersant Corexit 9500A, and dispersant-treated crude oil on the survival and growth rates of nauplii of the barnacle Amphibalanus improvisus and tornaria larvae of the enteropneust Schizocardium sp. Growth rates of barnacle nauplii and tornaria larvae were significantly reduced after exposure to chemically dispersed crude oil and dispersant Corexit 9500A at concentrations commonly found in the water column after dispersant application in crude oil spills.

View Article and Find Full Text PDF

In 2010, nearly 7 million liters of chemical dispersants, mainly Corexit 9500A, were released in the Gulf of Mexico to treat the Deepwater Horizon oil spill. However, little is still known about the effects of Corexit 9500A and dispersed crude oil on microzooplankton despite the important roles of these planktonic organisms in marine ecosystems. We conducted laboratory experiments to determine the acute toxicity of Corexit 9500A, and physically and chemically dispersed Louisiana light sweet crude oil to marine microzooplankton (oligotrich ciliates, tintinnids and heterotrophic dinoflagellates).

View Article and Find Full Text PDF

Planktonic copepods play a key function in marine ecosystems, however, little is known about the effects of dispersants and chemically dispersed crude oil on these important planktonic organisms. We examined the potential for the copepods Acartia tonsa, Temora turbinata and Parvocalanus crassirostris to ingest crude oil droplets and determined the acute toxicity of the dispersant Corexit(®) 9500A, and physically and chemically dispersed crude oil to these copepods. We detected ingestion of crude oil droplets by adults and nauplii of the three copepod species.

View Article and Find Full Text PDF

Syngnathid fish (seahorses, pipefish and sea dragons) are slow swimmers yet capture evasive prey (copepods) using a technique known as the 'pivot' feeding, which involves rapid movement to overcome prey escape capabilities. However, this feeding mode functions only at short range and requires approaching very closely to hydrodynamically sensitive prey without triggering an escape. Here we investigate the role of head morphology on prey capture using holographic and particle image velocimetry (PIV).

View Article and Find Full Text PDF

Gelatinous zooplankton play an important role in marine food webs both as major consumers of metazooplankton and as prey of apex predators (e.g., tuna, sunfish, sea turtles).

View Article and Find Full Text PDF