Publications by authors named "Edward J Berbari"

Introduction: The electrophysiologic basis for characteristic rate-dependent, constant-late-coupled (390 + 54 milliseconds) premature ventricular beats (PVBs) present 4-5 days following coronary artery occlusion were examined in 108 anesthetized dogs.

Methods And Results: Fractionated/double potentials were observed in injured zone bipolar and composite electrograms at prolonged sinus cycle lengths (1,296 ± 396 milliseconds). At shorter cycle lengths, conduction of the delayed potential decremented, separating from the initial electrogram by a progressively prolonged isoelectric interval.

View Article and Find Full Text PDF

Bi-ventricular (BiV) pacing is an effective therapy for the treatment of cardiac electromechanical (EM) dysfunction. The reason(s), however, for therapy non-response in approximately one-third of the subjects remains unclear, especially as it relates to myocardial perfusion and pacing location. In this study, we examined how acute BiV pacing response may be related to underlying myocardial perfusion coupled with pacing near or distant to the area of perfusion.

View Article and Find Full Text PDF

Most studies of cardiac late potentials (LPs) recorded from the body surface use signal processing definitions to characterize these abnormal ventricular potentials. For many years, the focus of the clinical studies have been on those signals that outlast the QRS complex; however, cardiac mapping studies have clearly identified that the such abnormal activation occurs during the QRS complex as well and can be distinguished from normal QRS potentials using advanced signal processing tools. Thus, both the abnormal intra-QRS potentials and the LP represent a continuum of the same signal sources.

View Article and Find Full Text PDF

Previous studies have speculated, based on indirect evidence, that the action potential at the transverse (t)-tubules is longer than at the surface membrane in mammalian ventricular cardiomyocytes. To date, no technique has enabled recording of electrical activity selectively at the t-tubules to directly examine this hypothesis. We used confocal line-scan imaging in conjunction with the fast response voltage-sensitive dyes ANNINE-6 and ANNINE-6plus to resolve action potential-related changes in fractional dye fluorescence (DeltaF/F) at the t-tubule and surface membranes of in situ mouse ventricular cardiomyocytes.

View Article and Find Full Text PDF

Modeling abnormal depolarization of the ventricles may provide a means to localize sites of arrhythmia foci from the body surface recordings. In this paper, we present a single moving dipole (SMD) model of the ventricular depolarization. The model can reproduce characteristic QRS patterns comparable to the clinical recordings when it is located in an inhomogeneous torso model.

View Article and Find Full Text PDF

For generations of electrocardiogram (ECG) analysis, the presence of premature ventricular beats (PVBs) has been characterized as a common event in the ECG without regard to the mechanism which has caused the PVB in the first place. At best, the coupling interval with the preceding sinus beat may be noted. This viewpoint persisted throughout the era of automated ECG analysis, as well as influencing the treatment of more life threatening events by PVB suppression strategies alone.

View Article and Find Full Text PDF