Objective: To improve the predictions provided by Medicare's Hospital Compare (HC) to facilitate better informed decisions regarding hospital choice by the public.
Data Sources/setting: Medicare claims on all patients admitted for Acute Myocardial Infarction between 2009 through 2011.
Study Design: Cohort analysis using a Bayesian approach, comparing the present assumptions of HC (using a constant mean and constant variance for all hospital random effects), versus an expanded model that allows for the inclusion of hospital characteristics to permit the data to determine whether they vary with attributes of hospitals, such as volume, capabilities, and staffing.
In multiple regression under the normal linear model, the presence of multicollinearity is well known to lead to unreliable and unstable maximum likelihood estimates. This can be particularly troublesome for the problem of variable selection where it becomes more difficult to distinguish between subset models. Here we show how adding a spike-and-slab prior mitigates this difficulty by filtering the likelihood surface into a posterior distribution that allocates the relevant likelihood information to each of the subset model modes.
View Article and Find Full Text PDFA commonly used method for evaluating a hospital's performance on an outcome is to compare the hospital's observed outcome rate to the hospital's expected outcome rate given its patient (case) mix and service. The process of calculating the hospital's expected outcome rate given its patient mix and service is called risk adjustment (Iezzoni 1997). Risk adjustment is critical for accurately evaluating and comparing hospitals' performances since we would not want to unfairly penalize a hospital just because it treats sicker patients.
View Article and Find Full Text PDFCharacterizing the process by which molecular and cellular level changes occur over time will have broad implications for clinical decision making and help further our knowledge of disease etiology across many complex diseases. However, this presents an analytic challenge due to the large number of potentially relevant biomarkers and the complex, uncharacterized relationships among them. We propose an exploratory Bayesian model selection procedure that searches for model simplicity through independence testing of multiple discrete biomarkers measured over time.
View Article and Find Full Text PDF