Publications by authors named "Edward Harhaj"

Article Synopsis
  • TAX1BP1 is a special protein that helps control inflammation in the body by breaking down other proteins when things get too crazy, like during a viral infection.* -
  • It works with other proteins (TBK1 and IKBKE) to get rid of damaged proteins and stop them from causing more harm.* -
  • When TAX1BP1 is activated, it moves to a part of the cell called lysosomes, which are like garbage bins that get rid of unwanted stuff.*
View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia/lymphoma (ATLL) and the neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax oncoprotein regulates viral gene expression and persistently activates NF-κB to maintain the viability of HTLV-1-infected T cells. Here, we utilize a kinome-wide shRNA screen to identify the tyrosine kinase KDR as an essential survival factor of HTLV-1-transformed cells.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AhR)-interacting protein (AIP) is a ubiquitously expressed, immunophilin-like protein best known for its role as a co-chaperone in the AhR-AIP-Hsp90 cytoplasmic complex. In addition to regulating AhR and the xenobiotic response, AIP has been linked to various aspects of cancer and immunity that will be the focus of this review article. Loss-of-function AIP mutations are associated with pituitary adenomas, suggesting that AIP acts as a tumor suppressor in the pituitary gland.

View Article and Find Full Text PDF

The innate antiviral response to RNA viruses is initiated by sensing of viral RNAs by RIG-I-like receptors and elicits type I interferon (IFN) production, which stimulates the expression of IFN-stimulated genes that orchestrate the antiviral response to prevent systemic infection. Negative regulation of type I IFN and its master regulator, transcription factor IRF7, is essential to maintain immune homeostasis. We previously demonstrated that AIP (aryl hydrocarbon receptor interacting protein) functions as a negative regulator of the innate antiviral immune response by binding to and sequestering IRF7 in the cytoplasm, thereby preventing IRF7 transcriptional activation and type I IFN production.

View Article and Find Full Text PDF

Human T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10-20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroinflammatory disorder termed HTLV-1-asssociated myelopathy/tropical spastic paraparesis (HAM/TSP), asymptomatic carriers are more susceptible to opportunistic infections. Furthermore, ATLL patients are severely immunosuppressed and prone to other malignancies and other infections.

View Article and Find Full Text PDF

Adult T-cell leukemia and lymphoma (ATLL) is an intractable T-cell neoplasia caused by a retrovirus, namely human T-cell leukemia virus type 1 (HTLV-1). Patients suffering from ATLL present a poor prognosis and have a dearth of treatment options. In contrast to the sporadic expression of viral transactivator protein Tax present at the 5' promoter region long terminal repeats (LTR), HTLV-1 bZIP gene (HBZ) is encoded by 3'LTR (the antisense promoter) and maintains its constant expression in ATLL cells and patients.

View Article and Find Full Text PDF

TAX1BP1 is a selective macroautophagy/autophagy receptor that plays a central role in host defense to pathogens and in regulating the innate immune system. TAX1BP1 facilitates the xenophagic clearance of pathogenic bacteria such as and and regulates TLR3 (toll-like receptor 3)-TLR4 and DDX58/RIG-I-like receptor (RLR) signaling by targeting TICAM1 and MAVS for autophagic degradation respectively. In addition to these canonical autophagy receptor functions, TAX1BP1 can also exert multiple accessory functions that influence the biogenesis and maturation of autophagosomes.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), and the neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein persistently activates the NF-κB pathway to enhance the proliferation and survival of HTLV-1 infected T cells. Lysine 63 (K63)-linked polyubiquitination of Tax provides an important regulatory mechanism that promotes Tax-mediated interaction with the IKK complex and activation of NF-κB; however, the host proteins regulating Tax ubiquitination are largely unknown.

View Article and Find Full Text PDF

Inflammation induced by transcription factors, including Signal Transducers and Activators of Transcription (STATs) and NF-κB, in response to microbial pathogenic infections and ligand dependent receptors stimulation are critical for controlling infections. However, uncontrolled inflammation induced by these transcription factors could lead to immune dysfunction, persistent infection, inflammatory related diseases and the development of cancers. Although the induction of innate immunity and inflammation in response to viral infection is important to control virus replication, its effects can be modulated by lymphotropic viruses including human T-cell leukemia virus type 1 (HTLV-1), Κaposi's sarcoma herpesvirus (KSHV), and Epstein Barr virus (EBV) during de novo infection as well as latent infection.

View Article and Find Full Text PDF
Article Synopsis
  • * Key viral proteins like Tax and HTLV-1 basic leucine zipper factor (HBZ) are crucial for the virus's survival, with Tax promoting T-cell proliferation and survival through various molecular mechanisms.
  • * HTLV-1 employs strategies to control Tax expression to evade the immune system while still ensuring that anti-apoptotic genes remain active, setting the stage for potentially malignant transformations in infected cells.
View Article and Find Full Text PDF

Myocyte enhancer factor (MEF)-2 plays a critical role in proliferation, differentiation, and development of various cell types in a tissue specific manner. Four isoforms of MEF-2 (A-D) differentially participate in controlling the cell fate during the developmental phases of cardiac, muscle, vascular, immune and skeletal systems. Through their associations with various cellular factors MEF-2 isoforms can trigger alterations in complex protein networks and modulate various stages of cellular differentiation, proliferation, survival and apoptosis.

View Article and Find Full Text PDF

Human herpesvirus 8 (HHV-8) is causally related to human malignancies. HHV-8 latent viral FLICE-inhibitory protein (vFLIP) is a viral oncoprotein that is linked to pathogenesis, but how its expression is regulated is largely unknown. In an attempt to understand the role of the mitochondrial antiviral signaling (MAVS) adaptor in HHV-8 infection, we discovered that vFLIP expression was post-translationally up-regulated by the MAVS signaling complex on peroxisomes.

View Article and Find Full Text PDF

The human T-cell leukemia virus type 1 (HTLV-1) is a complex deltaretrovirus linked to adult T-cell leukemia/lymphoma (ATLL), a fatal CD4 +  malignancy in 3-5% of infected individuals. The HTLV-1 Tax regulatory protein plays indispensable roles in regulating viral gene expression and activating cellular signaling pathways that drive the proliferation and clonal expansion of T cells bearing HTLV-1 proviral integrations. Tax is a potent activator of NF-κB, a key signaling pathway that is essential for the survival and proliferation of HTLV-1-infected T cells.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are central players in post-transcriptional regulation and immune homeostasis. The ribonuclease and RBP Regnase-1 exerts critical roles in both immune cells and non-immune cells. Its expression is rapidly induced under diverse conditions including microbial infections, treatment with inflammatory cytokines and chemical or mechanical stimulation.

View Article and Find Full Text PDF

The host response to RNA virus infection consists of an intrinsic innate immune response and the induction of apoptosis as mechanisms to restrict viral replication. The mitochondrial adaptor molecule MAVS plays critical roles in coordinating both virus-induced type I interferon production and apoptosis; however, the regulation of MAVS-mediated apoptosis is poorly understood. Here, we show that the adaptor protein TAX1BP1 functions as a negative regulator of virus-induced apoptosis.

View Article and Find Full Text PDF

Low levels of the survival motor neuron (SMN) protein cause spinal muscular atrophy, the leading genetic disorder for infant mortality. SMN is ubiquitously expressed in various cell types and localizes in both the cytoplasm and the nucleus, where it concentrates in two subnuclear structures termed Cajal body (CB) and gems. In addition, SMN can also be detected in the nucleolus of neurons.

View Article and Find Full Text PDF
Article Synopsis
  • IRF7 is a crucial transcription factor that regulates type I interferons, helping to control viral infections and inflammation.
  • AIP has been identified as a new binding partner of IRF7 that inhibits its activity, especially during viral infections.
  • Loss of AIP enhances IFN production and resistance to viruses, highlighting AIP's role as a negative regulator of the antiviral response.
View Article and Find Full Text PDF
Article Synopsis
  • * Inhibition of MEF-2 through specific methods led to decreased viral replication and T-cell transformation, while increased MEF-2 levels correlated with ATL patients, indicating its potential role in disease progression.
  • * The research confirms that MEF-2 directly binds to the HTLV-1 LTR, forming a transcriptional complex with Tax and CREB, and shows that various signaling pathways are activated during HTLV-1 infection, suggesting MEF-2's critical
View Article and Find Full Text PDF

The Nuclear factor-kappaB (NF-κB) family of transcription factors plays critical roles in inflammatory responses and host defense; however, uncontrolled NF-κB activation can be deleterious by promoting autoimmune diseases and cancers. Lysine K63 (K63)-linked polyubiquitination has emerged as an important regulatory mechanism in NF-κB signaling by regulating dynamic protein-protein interactions that trigger NF-κB signaling. RIP1 and TRAF6 serve as key substrates of K63-linked polyubiquitin chains in tumor necrosis factor receptor (TNFR) and interleukin-1 receptor (IL-1R) pathways respectively as a mechanism to recruit TAK1 and IKK kinases by associated ubiquitin-binding adaptor molecules.

View Article and Find Full Text PDF
Article Synopsis
  • - HTLV-1 is a retrovirus linked to adult T-cell leukemia, with the viral protein Tax playing a crucial role in its oncogenic effects by hindering immune responses.
  • - Tax impedes the activity of immune sensors RIG-I and MDA5, and interferes with the TRIF pathway, disrupting type I interferon production crucial for antiviral defense.
  • - Insights into how Tax subverts host immune defenses may lead to potential therapeutic strategies for treating HTLV-1-related diseases.
View Article and Find Full Text PDF

Between 15-20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways.

View Article and Find Full Text PDF
Article Synopsis
  • - HTLV-1 is a retrovirus that infects CD4+ T cells, leading to adult T-cell leukemia/lymphoma (ATLL) in a small percentage of individuals after a long infection period.
  • - The viral protein Tax plays a key role in T-cell transformation by activating the NF-κB signaling pathway, although the specific mechanisms are still unclear.
  • - New research suggests that Tax manipulates the ubiquitin system to enhance NF-κB signaling and influence its own stability and movement within cells, contributing to cancer development.
View Article and Find Full Text PDF

The human T-cell leukemia virus type 1 (HTLV-1) Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs) and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner.

View Article and Find Full Text PDF
Article Synopsis
  • HTLV-1 infection is associated with adult T-cell leukemia (ATL) and a neuroinflammatory disease, with the HTLV-1 Tax protein playing a significant role in transforming T cells by activating the NF-κB transcription factor.
  • Research using RNA sequencing revealed that the IL-25 receptor subunit IL-17RB is overexpressed in HTLV-1 immortalized T cells, and its expression is crucial for Tax-induced NF-κB signaling.
  • Findings suggest that Tax activates an IL-17RB-NF-κB autocrine loop that is essential for the survival and proliferation of HTLV-1 transformed T cells, highlighting IL-17RB as a potential target in ATL treatment.
View Article and Find Full Text PDF