Interleukin-23 (IL-23, IL-23p19) is a proinflammatory cytokine in the IL-12-related family. Although inflammatory cells in herniated discs have been shown to contain IL-23, little is known about the presence and role of IL-23 in human disc cells. We analyzed disc specimens for IL-23 localization using immunohistochemistry in control, herniated and non-herniated discs from which annulus fibrosus (annulus) cells were isolated and cultured to identify IL-23 gene expression and production.
View Article and Find Full Text PDFPhosphocitrate (PC) and its analogue, PC-β ethyl ester, inhibit articular cartilage degeneration in Hartley guinea pigs. However, the underlying molecular mechanisms remain unclear. The present study aimed to investigate the hypothesis that PC exerted its disease-modifying effect on osteoarthritis (OA), in part, by inhibiting a molecular program similar to that in the endochondral pathway of ossification.
View Article and Find Full Text PDFThe aim of this study was to examine the complexity of the stem cell populations in the intervertebral disc (IVD) and understand their role in disc degeneration, with a view of determining whether the resident stem cells could be developed for therapeutic purposes to combat IVD degeneration. Stem cells have been isolated from disc and paradiscal tissues, including the notochord, annulus fibrosus (AF), nucleus pulposus (NP), cartilaginous endplate (CEP), ligamentum flavum, and vertebral body. Resident AF and NP cells are relatively sparsely distributed occurring as single or occasional doublet cells surrounded by an extensive extracellular matrix (ECM).
View Article and Find Full Text PDFBackground: Phosphocitrate (PC) inhibits osteoarthritis (OA) in Hartley guinea pigs. However, the underlying molecular mechanisms remain poorly understood.
Objective: This study sought to examine the biological effect of PC on OA chondrocytes and test the hypothesis that PC may exert its OA disease modifying effect, in part, by inhibiting the expression of genes implicated in OA disease process and stimulating the production of extracellular matrices.
Background: Chondrocytes have been traditionally thought to be responsible for calcium crystal deposits within osteoarthritic knees. Increasing recent experimental evidence suggests that menisci may also play a role. However, the calcifying potential of chondrocytes and meniscal cells derived from same OA patients, and the genes associated with meniscal calcification have never been fully examined.
View Article and Find Full Text PDFPhosphocitrate inhibits cartilage degeneration, however, the prospect of phosphocitrate as an oral disease modifying drug might be limited. The purpose of this study was to investigate the biological effects and disease-modifying activity of a phosphocitrate "analog," CM-01 (Carolinas Molecule-01), and test the hypothesis that CM-01 is a disease modifying drug for osteoarthritis therapy. The effects of CM-01 on calcium crystal-induced expression of matrix metalloproteinase-1 and interleukin-1 beta, cell-mediated calcification and production of proteoglycan by chondrocytes were examined in cell cultures.
View Article and Find Full Text PDFBackground: Back pain and disc degeneration have a growing socioeconomic healthcare impact. Mucin 1 (MUC1) is a transmembrane glycoprotein whose extracellular and intracellular domains participate in cellular signaling. Little is currently known about the presence or role of MUC1 in human disc degeneration.
View Article and Find Full Text PDFStudy Design: Institutional review board-approved research using human annulus cells cocultured with F11 nerve cells.
Objective: To perform functional, kinetic assays of neurite dynamics and media neurotrophin measurements to test whether proinflammatory cytokines influence annulus cells' signaling cues for neurite growth/repulsion.
Summary Of Background Data: Nerves grow in response to signaling molecules called neurotrophins, which disc cells produce (e.
Back pain and intervertebral disc degeneration have growing socioeconomic/health care impacts. Increasing research efforts address use of stem and progenitor cell-based replacement therapies to repopulate and regenerate the disc. Data presented here on the innate human annulus progenitor cells: (i) assessed osteogenic, chondrogenic and adipogenic potentials of cultured human annulus cells; and (ii) defined progenitor-cell related gene expression patterns.
View Article and Find Full Text PDFThe relationship between neurotrophins produced by human annulus cells, such as neurotrophin-4 (NT4) and brain-derived neurotrophic factor (BDNF) which function in neurite survival and outgrowth, and nerve ingrowth into the disc remains poorly understood. In this work, we tested F11 neurite growth during exposure to control media, media with added nerve growth factor (NGF), conditioned media (CM) harvested from previous human annulus culture, or co-culture with annulus cells. Co-culture of F11 cells with annulus cells significantly increased media levels of amphiregulin, BDNF, glial-derived neurotrophic factor, and vascular endothelial growth factor compared to levels from in culture of F11 cells alone (p ≤ 0.
View Article and Find Full Text PDFBackground: It is believed that phosphocitrate (PC) exerts its disease-modifying effects on osteoarthritis (OA) by inhibiting the formation of crystals. However, recent findings suggest that PC exerts its disease-modifying effect, at least in part, through a crystal-independent action. This study sought to examine the disease-modifying effects of PC and its analogue PC-β-ethyl ester (PC-E) on partial meniscectomy-induced OA and the structure-activity relationship.
View Article and Find Full Text PDFCase: A thirty-nine-year-old man with alkaptonuria presented with low back pain. Imaging demonstrated lumbar scoliosis, extensive irregularities of end-plate vertebral margins, and Thompson Grade-V disc degeneration. Six months later, the patient returned with a herniated L2-L3 disc.
View Article and Find Full Text PDFOsteoarthritis is a joint disease involved in articular cartilage, subchondral bone, meniscus and synovial membrane. This study sought to examine cartilage degeneration, subchondral bone mineral density (BMD) and meniscal mineral density (MD) in male Hartley, female Hartley and female strain 13 guinea pigs to determine the association of cartilage degeneration with subchondral BMD and meniscal MD. Cartilage degeneration, subchondral BMD and meniscal MD in 12 months old guinea pigs were examined with histochemistry, X-ray densitometry and calcium analysis.
View Article and Find Full Text PDFStudy Design: Autophagy-related gene expression and ultrastructural features of autophagy were studied in human discs.
Objective: To obtain molecular/morphological data on autophagy in human disc degeneration and cultured human annulus cells exposed to proinflammatory cytokines.
Summary Of Background Data: Autophagy is an important process by which cytoplasm and organelles are degraded; this adaptive response to sublethal stresses (such as nutrient deprivation present in disc degeneration) supplies needed metabolites.
Study Design: A study using cultured human annulus cells and human annular tissue.
Objective: To further explore and define mitochondrial mechanisms related to disc cell apoptosis in vitro and in vivo.
Summary Of Background Data: Mitochondrial-dependent intrinsic signaling pathways are a well-recognized component of apoptosis (programmed cell death).
Mechanisms which control and enhance proinflammatory cytokine expression during human disc degeneration are still poorly understood. The high-mobility group box-1 gene (HMGB1) produces a protein which can itself act as a cytokine, or can function as a potent proinflammatory mediator. Little is known about expression of HMGB1 in the human disc.
View Article and Find Full Text PDFChemokines are important secondary inflammatory mediators released in response to stimuli which act as second-order cytokines with specialized functions in inflammation. The role of many of these specialized mediators is as yet poorly understood in the human intervertebral disc. Here we investigated CCL2 (chemokine (C-C motif) ligand 2, also known as monocyte chemotactic protein-1 (MCP-1)) in a study of its immunolocalization in disc tissue, and then hypothesized that exposure of cultured human annulus cells to proinflammatory cytokines might alter CCL2 gene expression and CCL2 production.
View Article and Find Full Text PDFPhosphocitrate (PC) inhibited calcium crystal-associated osteoarthritis (OA) in Hartley guinea pigs. However, the molecular mechanisms remain elusive. This study sought to determine PC targeted genes and the expression of select PC targeted genes in OA menisci to test hypothesis that PC exerts its disease modifying activity in part by reversing abnormal expressions of genes involved in OA.
View Article and Find Full Text PDFCalcium crystals are present in the synovial fluid of 65%-100% patients with osteoarthritis (OA) and 20%-39% patients with rheumatoid arthritis (RA). This study sought to investigate the role of fibroblast-like synoviocytes (FLSs) in calcium mineral formation. We found that numerous genes classified in the biomineral formation process, including bone gamma-carboxyglutamate (gla) protein/osteocalcin, runt-related transcription factor 2, ankylosis progressive homolog, and parathyroid hormone-like hormone, were differentially expressed in the OA and RA FLSs.
View Article and Find Full Text PDFBackground: Disc degeneration and its associated low back pain are a major health care concern causing disability with a prominent role in this country's medical, social and economic structure. Low back pain is devastating and influences the quality of life for millions. Low back pain lifetime prevalence approximates 80% with an estimated direct cost burden of $86 billion per year.
View Article and Find Full Text PDFMatrix metalloproteinase-12 (MMP-12; macrophage metalloelastase) degrades a number of extracellular matrix components which are present in the intervertebral disc, including type IV collagen, fibronectin, laminin, chondroitin sulfates, elastin and fibrinogen. MMP-12 has recently discovered relationships with cytokines and chemokines which also relate to disc cell biology. To date, no study has assessed immunolocalization of MMP-12 in degenerating human intervertebral disc tissue.
View Article and Find Full Text PDFGrowth and differentiation factor-5 (GDF-5) is a member of the TGF-ß superfamily which regulates cell division and differentiation. GDF-5 attracted high interest because of its role in skeletal development, especially in cartilaginous sites. Little is known, however, about the role of GFD-5 in disc cell biology.
View Article and Find Full Text PDFBackground: Disc space narrowing, osteophytes, and disc degeneration are common and increase with aging. Few animal models are appropriate for the study of spontaneous age-related cervical disc degeneration.
Questions/purposes: We used the sand rat, a member of the gerbil family with well-recognized age-related lumbar disc degeneration, to determine whether spontaneous cervical disc degeneration differed from lumbar degeneration when evaluated by (1) radiologic and (2) histologic measures.
Chemokines act as important secondary inflammatory mediators which are released by cells in response to a variety of stimuli. Chemokines bind to cell surface receptors and act as second-order cytokines with specialized functions in inflammation. The role of RANTES (Regulated upon Activation, Normal T-cell Expressed, and Secreted) (also called CCL5 (chemokine (C-C motif) ligand 5)) has received little attention to date in disc tissue.
View Article and Find Full Text PDF