Publications by authors named "Edward Gogol"

The anthrax lethal toxin consists of protective antigen (PA) and lethal factor (LF). Understanding both the PA pore formation and LF translocation through the PA pore is crucial to mitigating and perhaps preventing anthrax disease. To better understand the interactions of the LF-PA engagement complex, the structure of the LF-bound PA pore solubilized by a lipid nanodisc was examined using cryo-EM.

View Article and Find Full Text PDF

Bacterial toxin or viral entry into the cell often requires cell surface binding and endocytosis. The endosomal acidification induces a limited unfolding/refolding and membrane insertion reaction of the soluble toxins or viral proteins into their translocation competent or membrane inserted states. At the molecular level, the specific orientation and immobilization of the pre-transitioned toxin on the cell surface is often an important prerequisite prior to cell entry.

View Article and Find Full Text PDF
Article Synopsis
  • Accumulation of the mutant alpha 1 antitrypsin Z (AT-Z) protein in the liver of PiZ mice leads to liver injury similar to that observed in humans with alpha 1 antitrypsin deficiency.
  • Despite an increase in polyubiquitin conjugates indicating impaired protein degradation, the levels of active 26S proteasomes remained unchanged, suggesting an underlying defect in the proteasome's function rather than a lack of proteasome availability.
  • The study identified alterations in specific subunits of the proteasome related to oxidative stress, indicating that the presence of AT-Z aggregates indirectly disrupts the degradation of proteins marked for destruction by polyubiquitination.
View Article and Find Full Text PDF

We have derived structures of intact calmodulin (CaM)-free and CaM-bound endothelial nitric oxide synthase (eNOS) by reconstruction from cryo-electron micrographs. The CaM-free reconstruction is well fitted by the oxygenase domain dimer, but the reductase domains are not visible, suggesting they are mobile and thus delocalized. Additional protein is visible in the CaM-bound reconstruction, concentrated in volumes near two basic patches on each oxygenase domain.

View Article and Find Full Text PDF

Obtaining a proper fold of affinity tagged chimera proteins can be difficult. Frequently, the protein of interest aggregates after the chimeric affinity tag is cleaved off, even when the entire chimeric construct is initially soluble. If the attached protein is incorrectly folded, chaperone proteins such as GroEL bind to the misfolded construct and complicate both folding and affinity purification.

View Article and Find Full Text PDF

We analyzed the 440-kDa transmembrane pore formed by the protective antigen (PA) moiety of anthrax toxin in the presence of GroEL by negative-stain electron microscopy. GroEL binds both the heptameric PA prepore and the PA pore. The latter interaction retards aggregation of the pore, prolonging its insertion-competent state.

View Article and Find Full Text PDF

Many protein conformational diseases arise when proteins form alternative stable conformations, resulting in aggregation and accumulation of the protein as fibrillar deposits, or amyloids. Interestingly, numerous proteins implicated in amyloid protein formation show similar structural and functional properties. Given this similarity, we tested the notion that carboxymethylated bovine alpha-lactalbumin (1SS-alpha-lac) could serve as a general amyloid fibrillation/aggregation model system.

View Article and Find Full Text PDF

ATP hydrolysis is required for degradation of polyubiquitinated proteins by the 26S proteasome but is thought to play no role in proteasomal stability during the catalytic cycle. In contrast to this view, we report that ATP hydrolysis triggers rapid dissociation of the 19S regulatory particles from immunopurified 26S complexes in a manner coincident with release of the bulk of proteasome-interacting proteins. Strikingly, this mechanism leads to quantitative disassembly of the 19S into subcomplexes and free Rpn10, the polyubiquitin binding subunit.

View Article and Find Full Text PDF

The 13 angstroms resolution structures of GroEL bound to a single monomer of the protein substrate glutamine synthetase (GS(m)), as well as that of unliganded GroEL have been determined from a heterogeneous image population using cryo-electron microscopy (cryo-EM) coupled with single-particle image classification and reconstruction techniques. We combined structural data from cryo-EM maps and dynamic modeling, taking advantage of the known X-ray crystallographic structure and normal mode flexible fitting (NMFF) analysis, to describe the changes that occur in GroEL structure induced by GS(m) binding. The NMFF analysis reveals that the molecular movements induced by GS(m) binding propagate throughout the GroEL structure.

View Article and Find Full Text PDF

Phosphorylase kinase (PhK), a regulatory enzyme in the cascade activation of glycogenolysis, is a 1.3-MDa hexadecameric complex, (alphabetagammadelta)(4). PhK comprises two arched octameric (alphabetagammadelta)(2) lobes that are oriented back-to-back with overall D(2) symmetry and connected by small bridges.

View Article and Find Full Text PDF

ClpB is a member of the bacterial protein-disaggregating chaperone machinery and belongs to the AAA(+) superfamily of ATPases associated with various cellular activities. The mechanism of ClpB-assisted reactivation of strongly aggregated proteins is unknown and the oligomeric state of ClpB has been under discussion. Sedimentation equilibrium and sedimentation velocity show that, under physiological ionic strength in the absence of nucleotides, ClpB from Escherichia coli undergoes reversible self-association that involves protein concentration-dependent populations of monomers, heptamers, and intermediate-size oligomers.

View Article and Find Full Text PDF

Selection of the division site in Escherichia coli is regulated by the min system and requires the rapid oscillation of MinD between the two halves of the cell under the control of MinE. In this study we have further investigated the molecular basis for this oscillation by examining the interaction of MinD with phospholipid vesicles. We found that MinD bound to phospholipid vesicles in the presence of ATP and, upon binding, assembled into a well-ordered helical array that deformed the vesicles into tubes.

View Article and Find Full Text PDF

Phosphorylase kinase (PhK), a Ca(2+)-dependent regulatory enzyme of the glycogenolytic cascade in skeletal muscle, is a 1.3 MDa hexadecameric oligomer comprising four copies of four distinct subunits, termed alpha, beta, gamma, and delta, the last being endogenous calmodulin. The structures of both nonactivated and Ca(2+)-activated PhK were determined to elucidate Ca(2+)-induced structural changes associated with PhK's activation.

View Article and Find Full Text PDF