Publications by authors named "Edward Gershburg"

Vaccines based on messenger RNA technology have been tremendously successful, but their properties are not necessarily ideal for all pathogens. There is a risk that concentration on that technology alone for new vaccine development will ignore older technologies that have properties giving broader and more persistent protection.

View Article and Find Full Text PDF

Previous studies by our group identified a highly efficacious vaccine 0ΔNLS (deficient in the nuclear localization signal of infected cell protein 0) against herpes simplex virus 1 (HSV-1) in an experimental ocular mouse model. However, details regarding fundamental differences in the initial innate and adaptive host immune response were not explored. Here, we present a side-by-side analysis of the primary infection characterizing differences of the host immune response in mice infected with 0ΔNLS versus the parental, GFP105.

View Article and Find Full Text PDF

Vaccines to viral pathogens in experimental animal models are often deemed successful if immunization enhances resistance of the host to virus challenge as measured by cumulative survival, reduction in virus replication and spread and/or lessen or eliminate overt tissue pathology. Furthermore, the duration of the protective response against challenge is another important consideration that drives a vaccination regimen. In the current study, we assessed the durability of two related vaccines, 0∆NLS and 0∆RING, against ocular herpes simplex virus type 1 (HSV-1) challenge in mice thirty days (short-term) and one year (long-term) following the vaccine boost.

View Article and Find Full Text PDF

Diseases caused by human herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) affect millions of people worldwide and range from fatal encephalitis in neonates and herpes keratitis to orofacial and genital herpes, among other manifestations. The viruses can be shed efficiently by asymptomatic carriers, causing increased rates of infection. Viral transmission occurs through direct contact of mucosal surfaces followed by initial replication of the incoming virus in skin tissues.

View Article and Find Full Text PDF

Treatment to ameliorate the symptoms of infection with herpes simplex virus 2 (HSV-2) and to suppress reactivation has been available for decades. However, a safe and effective preventative or therapeutic vaccine has eluded development. Two novel live-attenuated HSV-2 vaccine candidates (RVx201 and RVx202) have been tested preclinically for safety.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) is a ubiquitous pathogen that infects over 90 % of adults. EBV is the primary etiological agent of infectious mononucleosis and is closely associated with nasopharyngeal carcinoma, gastric carcinoma, Hodgkin lymphoma and Burkitt lymphoma. Clinical serological assays for EBV diagnosis only survey a small portion of the viral proteome, which does not represent the total antigenic breadth presented to the immune system during viral infection.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) encodes two bona fide serine/threonine protein kinases, the US3 and UL13 gene products. HSV-1 ΔUS3 mutants replicate with wild-type efficiency in cultured cells, and HSV-1 ΔUL13 mutants exhibit <10-fold reduction in infectious viral titers. Given these modest phenotypes, it remains unclear how the US3 and UL13 protein kinases contribute to HSV-1 replication.

View Article and Find Full Text PDF

Expression systems used to study the biological function of a gene of interest can have limited utility due to three major factors: i) weak or heterogeneous gene expression; ii) poorly controlled gene expression; and iii) low efficiencies of stable integration and persistent expression. We envisioned that the ideal system should be tightly controlled and coupled with the ability to efficiently create and identify stable cell lines. Herein, we describe a system based upon a bidirectional Herpes simplex virus type 1 promoter that is naturally responsive to the VP16 transactivator and modified to permit tetracycline-regulated transcription on one side while maintaining constitutive activity on the other side.

View Article and Find Full Text PDF

Virion glycoproteins such as glycoprotein D (gD) are believed to be the dominant antigens of herpes simplex virus 2 (HSV-2). We have observed that mice immunized with a live HSV-2 ICP0- mutant virus, HSV-2 0ΔNLS, are 10 to 100 times better protected against genital herpes than mice immunized with a HSV-2 gD subunit vaccine (PLoS ONE 6:e17748). In light of these results, we sought to determine which viral proteins were the dominant antibody-generators (antigens) of the live HSV-2 0ΔNLS vaccine.

View Article and Find Full Text PDF

We lack a correlate of immunity to herpes simplex virus 2 (HSV-2) that may be used to differentiate whether a HSV-2 vaccine elicits robust or anemic protection against genital herpes. This gap in knowledge is often attributed to a failure to measure the correct component of the adaptive immune response to HSV-2. However, efforts to identify a correlate of immunity have focused on subunit vaccines that contain less than 3% of HSV-2's 40,000-amino-acid proteome.

View Article and Find Full Text PDF

Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials.

View Article and Find Full Text PDF

A sole EBV (Epstein-Barr virus)-encoded protein kinase (EBV-PK) (the BGLF4 gene product) plays important roles in viral infection. Although a number of targets of this protein have been identified, the kinase itself remains largely unstudied with regard to its enzymology and structure. In the present study, site-directed mutagenesis has been employed to generate mutations targeting residues involved in nuclear localization of the EBV-PK, core residues in subdomain III of the protein kinase domain conserved in most protein kinases or residues in subdomain VIa conserved only within the HPK (herpesvirus-encoded protein kinase) group.

View Article and Find Full Text PDF

Ganciclovir (GCV) and acyclovir (ACV) are guanine nucleoside analogues that inhibit lytic herpesvirus replication. GCV and ACV must be monophosphorylated by virally encoded enzymes to be converted into nucleotides and incorporated into viral DNA. However, whether GCV and/or ACV phosphorylation in Epstein-Barr virus (EBV)-infected cells is mediated primarily by the EBV-encoded protein kinase (EBV-PK), the EBV-encoded thymidine kinase (EBV-TK), or both is controversial.

View Article and Find Full Text PDF

ICP0 is a regulatory protein that plays a critical role in the replication-latency balance of herpes simplex virus (HSV). Absence of ICP0 renders HSV prone to establish quiescent infections, and thus cellular repressor(s) are believed to silence HSV mRNA synthesis when ICP0 fails to accumulate. To date, an ICP0-antagonized repressor has not been identified that restricts HSV mRNA synthesis by more than 2-fold.

View Article and Find Full Text PDF

Although many drugs inhibit the replication of Epstein-Barr virus (EBV) in cell culture systems, there is still no drug that is effective and approved for use in primary EBV infection. More recently, maribavir (MBV), an l-ribofuranoside benzimidazole, has been shown to be a potent and nontoxic inhibitor of EBV replication and to have a mode of action quite distinct from that of acyclic nucleoside analogs such as acyclovir (ACV) that is based primarily on MBV's ability to block the phosphorylation of target proteins by EBV and human cytomegalovirus protein kinases. However, since the antiviral mechanisms of the drug are complex, we have carried out a comprehensive analysis of the effects of MBV on the RNA expression levels of all EBV genes with a quantitative real-time reverse transcription-PCR-based array.

View Article and Find Full Text PDF

A newly discovered virally encoded deubiquitinating enzyme (DUB) is strictly conserved across the Herpesviridae. Epstein-Barr virus (EBV) BPLF1 encodes a tegument protein (3,149 amino acids) that exhibits deubiquitinating (DUB) activity that is lost upon mutation of the active-site cysteine. However, targets for the herpesviral DUBs have remained elusive.

View Article and Find Full Text PDF

Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are likely to play a conserved role in viral infection by interacting with common host cellular and viral factors; however, along with a conserved role, individual kinases may have unique functions in the context of viral infection in such a way that they are only partially replaceable even by close homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested their involvement in regulation of numerous processes at various infection steps (primary infection, nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) BGLF4 gene product is a protein kinase (PK). Although this kinase has been characterized and several of its targets have been identified, its biological role remains enigmatic. We have generated and assessed a BGLF4 knockdown phenotype by means of RNA interference and report the following: (i) BGLF4-targeting small interfering RNA effectively inhibited the expression of its product, the viral PK, during lytic reactivation, (ii) BGLF4 knockdown partially inhibited viral DNA replication and expression of selected late viral genes, (iii) the absence of EBV PK resulted in retention of the viral nucleocapsids in the nuclei, and (iv) as a result of the nuclear retention, release of infectious virions is significantly retarded.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) causes infectious mononucleosis and oral hairy leucoplakia, and is associated with a number of malignancies. There are, however, no regulatory agency-approved treatments for EBV-related diseases. Several antiviral drugs inhibit replication of EBV in cell culture including acyclic nucleoside and nucleotide analogues and pyrophosphate analogues, all of which inhibit the EBV DNA polymerase.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) BGLF4 gene encodes a serine/threonine protein kinase (PK) that is expressed in the cytolytic cycle. EBV nuclear antigen 2 (EBNA2) is a key latency gene essential for immortalization of B lymphocytes and transactivation of viral and cellular promoters. Here we report that EBV PK phosphorylates EBNA2 at Ser-243 and that these two proteins physically associate.

View Article and Find Full Text PDF

The human cytomegalovirus (HCMV) homolog of the Epstein-Barr virus (EBV) protein kinase (PK), UL97, is inhibited by maribavir (1263W94) and selected indolocarbazoles. Here we show that only one of these indolocarbazoles (K252a), but not maribavir, inhibits autophosphorylation of the EBV PK, BGLF4. However, maribavir and another indolocarbazole, NGIC-I, do inhibit EBV DNA synthesis, suggesting that although these last compounds inhibit both HCMV and EBV, they seem to operate through differ-ent pathways.

View Article and Find Full Text PDF

A member of the family of L-riboside benzimidazole compounds, 1263W94, was shown recently to inhibit replication of Epstein-Barr virus (EBV) (V. L. Zacny, E.

View Article and Find Full Text PDF