Six citrus flavonoids were tested for antineoplastic activity. The hamster cheek pouch model was utilized, and the solutions of the flavonoids (2.0-2.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
February 2007
Recent studies have shown that citrus limonoids have potential health benefits. However, information on the absorption and metabolism of limonoids in human gastrointestinal (GI) tract is limited. In the present study we have investigated the metabolism of limonin glucoside (LG), the predominant limonoid in citrus by four microorganisms (Enterococcus fecalis, Escherichia coli, Lactobacillus salivarius, and Candida albican) widely present in the human lower GI tract.
View Article and Find Full Text PDFA variety of in vitro models such as beta-carotene-linoleic acid, 1,1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, and hamster low-density lipoprotein (LDL) were used to measure the antioxidant activity of 11 citrus bioactive compounds. The compounds tested included two limonoids, limonin (Lim) and limonin 17-beta-D-glucopyranoside (LG); eight flavonoids, apigenin (Api), scutellarein (Scu), kaempferol (Kae), rutin trihydrate (Rut), neohesperidin (Neh), neoeriocitrin (Nee), naringenin (Ngn), and naringin(Ng); and a coumarin (bergapten). The above compounds were tested at concentration of 10 microM in all four methods.
View Article and Find Full Text PDFResearch in this laboratory has shown that some citrus limonoids can inhibit the development of 7,12-dimethylbenz[a]anthracene-induced oral tumors. The data from these studies have suggested that certain rings in the limonoid nucleus may be critical to antineoplastic activity. Using the hamster cheek pouch model, three new limonoids (ichangensin, deoxylimonin, and obacunone) have now been tested for cancer chemopreventive activity.
View Article and Find Full Text PDF