The limited number of recombinant events in recombinant inbred lines suggests that for a biparental population with a limited number of recombinant inbred lines, it is unnecessary to genotype the lines with many markers. For genomic prediction and selection, previous studies have demonstrated that only 1000-2000 genome-wide common markers across all lines/accessions are needed to reach maximum efficiency of genomic prediction in populations. Evaluation of too many markers will not only increase the cost but also generate redundant information.
View Article and Find Full Text PDFWe have estimated the average genetic diversity of two annual and six perennial species based upon 76 orthologous gene sets and performed phylogenetic analysis, divergence analysis and tests for departure from neutrality of the eight species using 52 orthologous gene sets. In addition, 367 orthologous gene sets were used to estimate the relationships of 11 accessions. Among the perennials, showed the highest nucleotide diversity.
View Article and Find Full Text PDFA set of nested association mapping (NAM) families was developed by crossing 40 diverse soybean [ (L.) Merr.] genotypes to the common cultivar.
View Article and Find Full Text PDFBackground: Soybean seed weight is not only a yield component, but also a critical trait for various soybean food products such as sprouts, edamame, soy nuts, natto and miso. Linkage analysis and genome-wide association study (GWAS) are two complementary and powerful tools to connect phenotypic differences to the underlying contributing loci. Linkage analysis is based on progeny derived from two parents, given sufficient sample size and biological replication, it usually has high statistical power to map alleles with relatively small effect on phenotype, however, linkage analysis of the bi-parental population can't detect quantitative trait loci (QTL) that are fixed in the two parents.
View Article and Find Full Text PDFThe United States Department of Agriculture, Soybean Germplasm Collection includes 18,480 domesticated soybean and 1168 wild soybean accessions introduced from 84 countries or developed in the United States. This collection was genotyped with the SoySNP50K BeadChip containing greater than 50K single-nucleotide polymorphisms. Redundant accessions were identified in the collection, and distinct genetic backgrounds of soybean from different geographic origins were observed that could be a unique resource for soybean genetic improvement.
View Article and Find Full Text PDFThe objective of this research was to identify single nucleotide polymorphisms (SNPs) and to develop an Illumina Infinium BeadChip that contained over 50,000 SNPs from soybean (Glycine max L. Merr.).
View Article and Find Full Text PDFBackground: Next generation sequencing has significantly increased the speed at which single nucleotide polymorphisms (SNPs) can be discovered and subsequently used as molecular markers for research. Unfortunately, for species such as common bean (Phaseolus vulgaris L.) which do not have a whole genome sequence available, the use of next generation sequencing for SNP discovery is much more difficult and costly.
View Article and Find Full Text PDFBackground: The Soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy, but its marker density was only sufficient to properly orient 66% of the sequence scaffolds.
View Article and Find Full Text PDF