Publications by authors named "Edward F Delong"

A considerable amount of particulate carbon produced by oceanic photosynthesis is exported to the deep-sea by the "gravitational pump" (~6.8 to 7.7 Pg C/year), sequestering it from the atmosphere for centuries.

View Article and Find Full Text PDF

Oxygen-deficient marine waters referred to as oxygen minimum zones (OMZs) or anoxic marine zones (AMZs) are common oceanographic features. They host both cosmopolitan and endemic microorganisms adapted to low oxygen conditions. Microbial metabolic interactions within OMZs and AMZs drive coupled biogeochemical cycles resulting in nitrogen loss and climate active trace gas production and consumption.

View Article and Find Full Text PDF

Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus.

View Article and Find Full Text PDF

Phage satellites are mobile genetic elements that propagate by parasitizing bacteriophage replication. We report here the discovery of abundant and diverse phage satellites that were packaged as concatemeric repeats within naturally occurring bacteriophage particles in seawater. These same phage-parasitizing mobile elements were found integrated in the genomes of dominant co-occurring bacterioplankton species.

View Article and Find Full Text PDF

Bacteria and archaea are central to the production, consumption, and remineralization of dissolved and particulate organic matter and contribute critically to carbon delivery, nutrient availability, and energy transformations in the deep ocean. To explore environmentally relevant genomic traits of sinking-particle-associated versus free-living microbes, we compared habitat-specific metagenome-assembled genomes recovered throughout the water column in the North Pacific Subtropical Gyre. The genomic traits of sinking-particle-associated versus free-living prokaryotes were compositionally, functionally, and phylogenetically distinct.

View Article and Find Full Text PDF

Exocellular DNA is operationally defined as the fraction of the total DNA pool that passes through a membrane filter (0.1 μm). It is composed of DNA-containing vesicles, viruses, and free DNA and is ubiquitous in all aquatic systems, although the sources, sinks, and ecological consequences are largely unknown.

View Article and Find Full Text PDF

Planktonic cells of the luminous marine bacterium establish themselves in the light-emitting organ of each generation of newly hatched bobtail squid. A symbiont population is maintained within the 6 separated crypts of the organ for the ∼9-month life of the host. In the wild, the initial colonization step is typically accomplished by a handful of planktonic cells, leading to a species-specific, but often multi-strain, symbiont population.

View Article and Find Full Text PDF

Sinking particles and particle-associated microbes influence global biogeochemistry through particulate matter export from the surface to the deep ocean. Despite ongoing studies of particle-associated microbes, viruses in these habitats remain largely unexplored. Whether, where, and which viruses might contribute to particle production and export remain open to investigation.

View Article and Find Full Text PDF

Complex assemblages of microbes in the surface ocean are responsible for approximately half of global carbon fixation. The persistence of high taxonomic diversity despite competition for a small suite of relatively homogeneously distributed nutrients, that is, 'the paradox of the plankton', represents a long-standing challenge for ecological theory. Here we find evidence consistent with temporal niche partitioning of nitrogen assimilation processes over a diel cycle in the North Pacific Subtropical Gyre.

View Article and Find Full Text PDF

Marine microbial ecology requires the systematic comparison of biogeochemical and sequence data to analyze environmental influences on the distribution and variability of microbial communities. With ever-increasing quantities of metagenomic data, there is a growing need to make datasets Findable, Accessible, Interoperable, and Reusable (FAIR) across diverse ecosystems. FAIR data is essential to developing analytical frameworks that integrate microbiological, genomic, ecological, oceanographic, and computational methods.

View Article and Find Full Text PDF

Thaumarchaeota and Thermoplasmatota are the most abundant planktonic archaea in the sea. Thaumarchaeota contain tetraether lipids as their major membrane lipids, but the lipid composition of uncultured planktonic Thermoplasmatota representatives remains unknown. To address this knowledge gap, we quantified archaeal cells and ether lipids in open ocean depth profiles (0-200 m) of the North Pacific Subtropical Gyre.

View Article and Find Full Text PDF

Background: Oceanic microbiomes play a pivotal role in the global carbon cycle and are central to the transformation and recycling of carbon and energy in the ocean's interior. SAR324 is a ubiquitous but poorly understood uncultivated clade of Deltaproteobacteria that inhabits the entire water column, from ocean surface waters to its deep interior. Although some progress has been made in elucidating potential metabolic traits of SAR324 in the dark ocean, very little is known about the ecology and the metabolic capabilities of this group in the euphotic and twilight zones.

View Article and Find Full Text PDF

The deep chlorophyll maximum (DCM) layer is an ecologically important feature of the open ocean. The DCM cannot be observed using aerial or satellite remote sensing; thus, in situ observations are essential. Further, understanding the responses of microbes to the environmental processes driving their metabolism and interactions requires observing in a reference frame that moves with a plankton population drifting in ocean currents, i.

View Article and Find Full Text PDF

Light fuels photosynthesis and organic matter production by primary producers in the sunlit ocean. The quantity and quality of the organic matter produced influence community function, yet measurements of metabolites, the products of cellular metabolism, over the diel cycle are lacking. We evaluated community-level biochemical consequences of oscillations of light in the North Pacific Subtropical Gyre by quantifying 79 metabolites in particulate organic matter from 15 m every 4 h over 8 days.

View Article and Find Full Text PDF

In 1977, Woese and Fox leveraged molecular phylogenetic analyses of ribosomal RNAs and identified a new microbial domain of life on Earth, the Archaebacteria (now known as Archaea). At the time of their discovery, only one archaebacterial group, the strictly anaerobic methanogens, was known. But soon, other phenotypically unrelated microbial isolates were shown to belong to the Archaea, many originating from extreme habitats, including extreme halophiles, extreme thermophiles, and thermoacidophiles.

View Article and Find Full Text PDF

In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them.

View Article and Find Full Text PDF

As a young bacteriologist just launching my career during the early days of the 'microbial revolution' in the 1980s, I was fortunate to participate in some early discoveries, and collaborate in the development of cross-disciplinary methods now commonly referred to as "metagenomics". My early scientific career focused on applying phylogenetic and genomic approaches to characterize 'wild' bacteria, archaea and viruses in their natural habitats, with an emphasis on marine systems. These central interests have not changed very much for me over the past three decades, but knowledge, methodological advances and new theoretical perspectives about the microbial world certainly have.

View Article and Find Full Text PDF
Article Synopsis
  • Sunlight significantly influences the daily patterns of phytoplankton activity, impacting ocean biogeochemical cycles.
  • Researchers studied phytoplankton in the North Pacific Subtropical Gyre, observing daily changes in pigment levels that suggest night is for metabolic recovery and daytime focuses on photoprotection.
  • The study found synchronized gene expression patterns related to photosynthesis across different taxa, but also noted that environmental factors affect pigment levels, highlighting the need for a combined approach using metatranscriptomics, proteomics, and metabolomics to better understand these dynamics.
View Article and Find Full Text PDF

In recent years, large-scale oceanic sequencing efforts have provided a deeper understanding of marine microbial communities and their dynamics. These research endeavors require the acquisition of complex and varied datasets through large, interdisciplinary and collaborative efforts. However, no unifying framework currently exists for the marine science community to integrate sequencing data with physical, geological, and geochemical datasets.

View Article and Find Full Text PDF

Ammonia-oxidizing archaea (AOA) are among the most abundant and ubiquitous microorganisms in the ocean, exerting primary control on nitrification and nitrogen oxides emission. Although united by a common physiology of chemoautotrophic growth on ammonia, a corresponding high genomic and habitat variability suggests tremendous adaptive capacity. Here, we compared 44 diverse AOA genomes, 37 from species cultivated from samples collected across diverse geographic locations and seven assembled from metagenomic sequences from the mesopelagic to hadopelagic zones of the deep ocean.

View Article and Find Full Text PDF

Viruses are the most abundant biological entities on Earth and play key roles in host ecology, evolution, and horizontal gene transfer. Despite recent progress in viral metagenomics, the inherent genetic complexity of virus populations still poses technical difficulties for recovering complete virus genomes from natural assemblages. To address these challenges, we developed an assembly-free, single-molecule nanopore sequencing approach, enabling direct recovery of complete virus genome sequences from environmental samples.

View Article and Find Full Text PDF

Microbial communities are critical to ecosystem dynamics and biogeochemical cycling in the open oceans. Viruses are essential elements of these communities, influencing the productivity, diversity, and evolution of cellular hosts. To further explore the natural history and ecology of open-ocean viruses, we surveyed the spatiotemporal dynamics of double-stranded DNA (dsDNA) viruses in both virioplankton and bacterioplankton size fractions in the North Pacific Subtropical Gyre, one of the largest biomes on the planet.

View Article and Find Full Text PDF

The spatiotemporal dynamics for marine viral populations has only recently been explored. However, nothing is known about temporal activities of the uncultured Pelagibacter virus vSAG 37-F6, which was discovered by single-virus genomics as potentially the most abundant marine virus. Here, we investigate the diel cycling of 37-F6 virus and the putative SAR11 host using coastal and oceanic transcriptomic and viromic time-series data from Osaka Bay and North Pacific Subtropical Gyre.

View Article and Find Full Text PDF

Marine microbial communities are responsible for many important ecosystem processes in the oceans. Their variability across time and depths is well recognized, but mostly at a coarse-grained taxonomic resolution. To gain a deeper perspective on ecological patterns of bacterioplankton diversity in the North Pacific Subtropical Gyre, we characterized bacterioplankton communities throughout the water column at a fine-grained taxonomic level with a focus on temporally persistent (core) populations.

View Article and Find Full Text PDF