Checkpoint inhibitors targeting programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) have revolutionized cancer therapy across many indications including urothelial carcinoma (UC). Because many patients do not benefit, a better understanding of the molecular mechanisms underlying response and resistance is needed to improve outcomes. We profiled tumors from 2,803 UC patients from four late-stage randomized clinical trials evaluating the PD-L1 inhibitor atezolizumab by RNA sequencing (RNA-seq), a targeted DNA panel, immunohistochemistry, and digital pathology.
View Article and Find Full Text PDFPurpose: It is estimated that the tumor suppressor gene is functionally lost in 40%-50% of patients with metastatic castration-resistant prostate cancer (mCRPC). There is limited information on the prognostic significance of status identified with genomic testing. This real-world cohort study assessed as a genetic biomarker using data from US-based oncology practices.
View Article and Find Full Text PDFPurpose: This retrospective analysis of the largest available clinico-genomic database used de-identified patient-level electronic health record-derived real-world data (RWD) combined with FoundationOne comprehensive genomic profiling (CGP) to characterize patients with metastatic urothelial carcinoma (mUC) treated in the real-world setting, detect potential biomarkers, and develop a bladder immune performance index (BIPI).
Experimental Design: Patients with mUC who started front-line single-agent immune checkpoint inhibitors (ICI) and an unmatched group treated with front-line platinum-based chemotherapy between January 1, 2011, and September 30, 2019, were selected. Clinical and genomic data were correlated with overall survival (OS).
Background: Despite the rapidly evolving therapeutic landscape, immunotherapy has demonstrated limited activity in prostate cancer. A greater understanding of the molecular landscape, particularly the expression of immune-related pathways, will inform future immunotherapeutic strategies. Consensus nonnegative matrix factorization (cNMF) is a novel model of molecular classification analyzing gene expression data, focusing on biological interpretation of metagenes and selecting meaningful clusters.
View Article and Find Full Text PDFEarly clinical data indicate that some patients with castration-resistant prostate cancer may benefit from program death ligand-1 (PD-L1) inhibition, especially with enzalutamide. The IMbassador250 trial (no. NCT03016312) enrolled 759 men with metastatic castration-resistant prostate cancer whose disease progressed on abiraterone.
View Article and Find Full Text PDFPurpose: Men with metastatic castration-resistant prostate cancer (mCRPC) have limited treatment options after progressing on hormonal therapy and chemotherapy. Here, we evaluate the safety and efficacy of atezolizumab (anti-PD-L1) + radium-223 dichloride (radium-223) in men with mCRPC.
Patients And Methods: This phase Ib study evaluated atezolizumab + radium-223 in men with mCRPC and bone and lymph node and/or visceral metastases that progressed after androgen pathway inhibitor treatment.
Purpose: Atezolizumab [anti-programmed death-ligand 1 (anti-PD-L1)] is well tolerated and efficacious in multiple cancers, but has not been previously evaluated in metastatic castration-resistant prostate cancer (mCRPC). This study examined the safety, efficacy, and biomarkers of atezolizumab monotherapy for mCRPC.
Patients And Methods: This phase Ia, open-label, dose-escalation and dose-expansion study (PCD4989g) enrolled patients with mCRPC who had progressed on sipuleucel-T or enzalutamide.
Prostate cancer is the second leading cause of cancer-related death in men. Despite having a relatively lower tumor mutational burden than most tumor types, multiple gene fusions such as have been characterized and linked to more aggressive disease. Individual tumor samples have been found to contain multiple fusions, and it remains unknown whether these fusions increase tumor immunogenicity.
View Article and Find Full Text PDFProgrammed death-ligand 1 (PD-L1) and its receptor, programmed cell death-1 (PD-1), are important negative regulators of immune cell activation. Therapeutically targeting PD-1/PD-L1 in diffuse large B-cell lymphoma (DLBCL) patients with a single agent has limited activity, meriting a deeper understanding of this complex biology and of available PD-L1 clinical assays. In this study, we leveraged 2 large de novo DLBCL phase 3 trials (GOYA and MAIN) to better understand the biologic and clinical relevance of PD-L1 in de novo DLBCL.
View Article and Find Full Text PDFProgrammed death-ligand 1 (PD-L1) expression on tumor cells (TCs) by immunohistochemistry is rapidly gaining importance as a diagnostic for the selection or stratification of patients with non-small cell lung cancer (NSCLC) most likely to respond to single-agent checkpoint inhibitors. However, at least two distinct patterns of PD-L1 expression have been observed with potential biological and clinical relevance in NSCLC: expression on TC or on tumor-infiltrating immune cells (ICs). We investigated the molecular and cellular characteristics associated with PD-L1 expression in these distinct cell compartments in 4,549 cases of NSCLC.
View Article and Find Full Text PDFTherapeutic antibodies that block the programmed death-1 (PD-1)-programmed death-ligand 1 (PD-L1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer. However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies.
View Article and Find Full Text PDFLancet
February 2018
Background: Few options exist for patients with locally advanced or metastatic urothelial carcinoma after progression with platinum-based chemotherapy. We aimed to assess the safety and efficacy of atezolizumab (anti-programmed death-ligand 1 [PD-L1]) versus chemotherapy in this patient population.
Methods: We conducted this multicentre, open-label, phase 3 randomised controlled trial (IMvigor211) at 217 academic medical centres and community oncology practices mainly in Europe, North America, and the Asia-Pacific region.
Background: First-line chemotherapy for patients with cisplatin-ineligible locally advanced or metastatic urothelial carcinoma is associated with short response duration, poor survival, and high toxicity. This study assessed atezolizumab (anti-programmed death-ligand 1 [PD-L1]) as treatment for metastatic urothelial cancer in cisplatin-ineligible patients.
Methods: For this single-arm, multicentre, phase 2 study, in 47 academic medical centres and community oncology practices in seven countries in North America and Europe, we recruited previously untreated patients with locally advanced or metastatic urothelial cancer who were cisplatin ineligible.
The application of modeling and simulation techniques is increasingly common in the preclinical stages of the drug development process. GDC-0917 [(S)-1-((S)-2-cyclohexyl-2-((S)-2-(methylamino)propanamido)acetyl)-N-(2-(oxazol-2-yl)-4-phenylthiazol-5-yl)pyrrolidine-2-carboxamide] is a potent second-generation antagonist of inhibitor of apoptosis (IAP) proteins that is being developed for the treatment of various cancers. GDC-0917 has low to moderate clearance in the mouse (12.
View Article and Find Full Text PDFB-cell chronic lymphocytic leukemia (B-CLL) is a lymphoproliferative disorder characterized by the surface expression of CD20, CD5 antigens, as well as the receptor CD40. Activation of CD40 by its ligand (CD40L) induces proliferation and rescues the cells from spontaneous and chemotherapy-induced apoptosis. CD40 activation also induces secretion of cytokines, such as IL-6, IL-10, TNF-alpha, IL-8, and GM-CSF, which are involved in tumor cell survival, migration, and interaction with cells in the tumor microenvironment.
View Article and Find Full Text PDFWith the sequence of the human genome at hand, target discovery strategies are needed that can rapidly identify novel gene products involved in human disease pathways. In this article, the authors describe a cell-based, high-throughput assay that can identify gene products capable of modulating the vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNFalpha) signaling pathways in human endothelial cells. The assay uses real-time PCR technology to measure downstream reporter mRNA transcripts induced upon cytokine stimulation in a 96-well plate format and has been adapted for use with recombinant adenoviruses.
View Article and Find Full Text PDF