Matrix attachment therapy (MAT) is an enzyme prodrug strategy that targets hyaluronan in the tumor extracellular matrix to deliver a prodrug converting enzyme near the tumor cells. A recombinant fusion protein containing the hyaluronan binding domain of TSG-6 (Link) and yeast cytosine deaminase (CD) with an N-terminal His(x6) tag was constructed to test MAT on the C26 colon adenocarcinoma in Balb/c mice that were given 5-fluorocytosine (5-FC) in the drinking water. LinkCD was expressed in Escherichia coli and purified by metal-chelation affinity chromatography.
View Article and Find Full Text PDFWe evaluated gene transfer using PEGylated bioresponsive nanolipid particles (NLPs) containing plasmid DNA administered by convection-enhanced delivery (CED) into orthotopically implanted U87-MG tumors in rat brain. We hypothesized that attachment of the human immunodeficiency virus trans-acting transcriptional activator peptide (TATp) to pH-sensitive, reduction-sensitive NLPs would increase gene transfer. TATp was attached either directly to a phospholipid (TATp-lipid) or via a 2-kd polyethylene glycol (PEG) to a lipid (TATp-PEG-lipid).
View Article and Find Full Text PDFThe synthesis of a variety of core functionalized PEGylated polyester dendrimers and their in vitro and in vivo properties are described in this report. These water-soluble dendrimers have been designed to carry eight functional groups on their dendritic core for a variety of biological applications such as drug delivery and in vivo imaging as well as eight solubilizing groups. Using a common symmetrical aliphatic ester dendritic core and trifunctional amino acid moieties, a library of dendrimers with phenols, alkyl alcohols, alkynes, ketones, and carboxylic acid functionalities has been synthesized without the need for column chromatography.
View Article and Find Full Text PDFThe antitumor effect of doxorubicin (DOX) conjugated to a biodegradable dendrimer was evaluated in mice bearing C-26 colon carcinomas. An asymmetric biodegradable polyester dendrimer containing 8-10 wt % DOX was prepared. The design of the dendrimer carrier optimized blood circulation time through size and molecular architecture, drug loading through multiple attachment sites, solubility through PEGylation, and drug release through the use of pH-sensitive hydrazone linkages.
View Article and Find Full Text PDFRigid-rod dendronized linear polymers consisting of a poly(4-hydroxystyrene) backbone and fourth-generation polyester dendrons were evaluated in vitro and in vivo to determine their suitability as drug delivery vectors. Cytotoxicity assays indicated that the polymers were well tolerated by cells in vitro. Biodistribution studies of the polymers in both nontumored and tumored mice revealed that as for random coil linear polymers, renal clearance was a function of polymer size, with significant urinary excretion observed for a 67 kDa dendronized polymer.
View Article and Find Full Text PDF