The elemental and isotopic abundances of major species in the Martian atmosphere have been determined, but analyses often lack sufficient precision, and those of minor and trace species are frequently not well known. Many important questions about the evolution and current state of Mars require the kind of knowledge that can be gained from analysis of a returned sample of the Martian atmosphere. Key target species include the noble gases, nitrogen, and various species containing carbon, hydrogen, and oxygen, such as methane.
View Article and Find Full Text PDFThe isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu/CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu and CI chondrites also have indistinguishable Ni isotope anomalies, which differ from those of other carbonaceous chondrites. We propose that this unique Fe and Ni isotopic composition reflects different accretion efficiencies of small FeNi metal grains among the carbonaceous chondrite parent bodies.
View Article and Find Full Text PDFCharacterization of the elemental distribution of samples with rough surfaces has been strongly desired for the analysis of various natural and artificial materials. Particularly for pristine and rare analytes with micrometer sizes embedded on specimen surfaces, non-invasive and matrix effect-free analysis is required without surface polishing treatment. To satisfy these requirements, we proposed a new method employing the sequential combination of two imaging modalities, i.
View Article and Find Full Text PDFThe UCLA Cosmochemistry Database was initiated as part of a data-rescue and -storage project aimed at archiving a variety of cosmochemical data acquired at University of California, Los Angeles (UCLA). The data collection includes elemental compositions of extraterrestrial materials analyzed by UCLA cosmochemists over the last five decades. The analytical techniques include atomic absorption spectrometry (AAS) and neutron activation analysis (NAA) at UCLA.
View Article and Find Full Text PDFStudies of material returned from Cb asteroid Ryugu have revealed considerable mineralogical and chemical heterogeneity, stemming primarily from brecciation and aqueous alteration. Isotopic anomalies could have also been affected by delivery of exogenous clasts and aqueous mobilization of soluble elements. Here, we show that isotopic anomalies for mildly soluble Cr are highly variable in Ryugu and CI chondrites, whereas those of Ti are relatively uniform.
View Article and Find Full Text PDFThe short-lived radionuclide aluminium-26 (Al) isotope is a major heat source for early planetary melting. The aluminium-26 - magnesium-26 (Al-Mg) decay system also serves as a high-resolution relative chronometer. In both cases, however, it is critical to establish whether Al was homogeneously or heterogeneously distributed throughout the solar nebula.
View Article and Find Full Text PDFDeep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time.
View Article and Find Full Text PDFPreliminary analyses of asteroid Ryugu samples show kinship to aqueously altered CI (Ivuna-type) chondrites, suggesting similar origins. We report identification of C-rich, particularly primitive clasts in Ryugu samples that contain preserved presolar silicate grains and exceptional abundances of presolar SiC and isotopically anomalous organic matter. The high presolar silicate abundance (104 ppm) indicates that the clast escaped extensive alteration.
View Article and Find Full Text PDFEarth's water, intrinsic oxidation state and metal core density are fundamental chemical features of our planet. Studies of exoplanets provide a useful context for elucidating the source of these chemical traits. Planet formation and evolution models demonstrate that rocky exoplanets commonly formed with hydrogen-rich envelopes that were lost over time.
View Article and Find Full Text PDFThe extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: O-rich (associated with refractory inclusions) and O-poor (associated with chondrules). Both the O-rich and O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward.
View Article and Find Full Text PDFInitial analyses showed that asteroid Ryugu's composition is close to CI (Ivuna-like) carbonaceous chondrites -the chemically most primitive meteorites, characterized by near-solar abundances for most elements. However, some isotopic signatures (e.g.
View Article and Find Full Text PDFLittle is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids.
View Article and Find Full Text PDFCarbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples.
View Article and Find Full Text PDFMeteorit Planet Sci
November 2019
Almahata Sitta (AhS), an anomalous polymict ureilite, is the first meteorite observed to originate from a spectrally classified asteroid (2008 TC). However, correlating properties of the meteorite with those of the asteroid is not straightforward because the AhS stones are diverse types. Of those studied prior to this work, 70-80% are ureilites (achondrites) and 20-30% are various types of chondrites.
View Article and Find Full Text PDFOxygen fugacity is a measure of rock oxidation that influences planetary structure and evolution. Most rocky bodies in the Solar System formed at oxygen fugacities approximately five orders of magnitude higher than a hydrogen-rich gas of solar composition. It is unclear whether this oxidation of rocks in the Solar System is typical among other planetary systems.
View Article and Find Full Text PDFWe describe an approach for determining biological N production in soils based on the proportions of naturally occurring NN in N. Laboratory incubation experiments reveal that biological N production, whether by denitrification or anaerobic ammonia oxidation, yields proportions of NN in N that are within 1‰ of that predicted for a random distribution of N and N atoms. This relatively invariant isotopic signature contrasts with that of the atmosphere, which has NN proportions in excess of the random distribution by 19.
View Article and Find Full Text PDFMolecular nitrogen (N) comprises three-quarters of Earth's atmosphere and significant portions of other planetary atmospheres. We report a 19 per mil (‰) excess of NN in air relative to a random distribution of nitrogen isotopes, an enrichment that is 10 times larger than what isotopic equilibration in the atmosphere allows. Biological experiments show that the main sources and sinks of N yield much smaller proportions of NN in N.
View Article and Find Full Text PDFEstablishing the age of the Moon is critical to understanding solar system evolution and the formation of rocky planets, including Earth. However, despite its importance, the age of the Moon has never been accurately determined. We present uranium-lead dating of Apollo 14 zircon fragments that yield highly precise, concordant ages, demonstrating that they are robust against postcrystallization isotopic disturbances.
View Article and Find Full Text PDFEarth and the Moon are shown here to have indistinguishable oxygen isotope ratios, with a difference in Δ'(17)O of -1 ± 5 parts per million (2 standard error). On the basis of these data and our new planet formation simulations that include a realistic model for primordial oxygen isotopic reservoirs, our results favor vigorous mixing during the giant impact and therefore a high-energy, high-angular-momentum impact. The results indicate that the late veneer impactors had an average Δ'(17)O within approximately 1 per mil of the terrestrial value, limiting possible sources for this late addition of mass to the Earth-Moon system.
View Article and Find Full Text PDFThe abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2015
Chondritic meteorites are made of primitive components that record the first steps of formation of solids in our Solar System. Chondrules are the major component of chondrites, yet little is known about their formation mechanisms and history within the solar protoplanetary disk (SPD). We use the reconstructed concentrations of short-lived (26)Al in chondrules to constrain the timing of formation of their precursors in the SPD.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
June 2014
Rationale: Rapid development of the CO2 'clumped-isotope' temperature proxy (Δ47 ) has involved both resource- and labor-intensive analytical methods. We report strategies for measuring Δ47 on a conventional mass spectrometer, with the usual CO2 set of three Faraday collectors while reducing the time devoted to standardization with temperature-equilibrated CO2.
Methods: We measured Δ47 in CO2 on a mass spectrometer using only three Faraday cups by 'multicollector peak hopping', directing (46)CO2(+) and (47)CO2(+) ion beams into the Faraday cups normally used for m/z 44 and 45.
Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2012
Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water-rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules.
View Article and Find Full Text PDF