Background/aims: Leukocyte adhesion to the endothelium is abnormal in hypertension. We have recently shown that spontaneously hypertensive rats (SHRs) have circulating leukocytes with enhanced CD18 receptor cleavage. In the current study, we investigate expression levels of its counter receptor, intercellular adhesion molecule (ICAM-1), and its possible proteolytic cleavage in the SHR and control Wistar rat.
View Article and Find Full Text PDFA complication of the spontaneously hypertensive rat (SHR) is microvascular rarefaction, defined by the loss of microvessels. However, the molecular mechanisms involved in this process remain incompletely identified. Recent work in our laboratory suggests that matrix metalloproteinases (MMPs) may play a role by cleavage of the vascular endothelial growth factor receptor 2 (VEGFR-2).
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2010
We recently observed the enhanced serine and matrix metalloproteinase (MMP) activity in the spontaneously hypertensive rat (SHR) compared with its normotensive Wistar-Kyoto (WKY) rat and the cleavage of membrane receptors in the SHR by MMPs. We demonstrate in vivo that MMP-7 and MMP-9 injection leads to a vasoconstrictor response in microvessels of rats that is blocked by a specific MMP inhibitor (GM-6001, 1 microM). Multiple pathways may be responsible.
View Article and Find Full Text PDFBesides an elevated blood pressure, the spontaneously hypertensive rat (SHR) has multiple microvascular complications including endothelial apoptosis with capillary rarefaction. The SHR also has elevated levels of proteolytic (e.g.
View Article and Find Full Text PDFObjective: Recent evidence suggests endothelial apoptosis may be a mechanism for capillary rarefaction in hypertensives. The objective of this study was to examine the early phase of endothelial apoptosis and capillary blood flow in the spontaneously hypertensive rat (SHR) and the normotensive Wistar-Kyoto (WKY) rat.
Methods: Since hypertension in SHR is dependent on glucocorticoids, the animals were treated with dexamethasone (DEX), by intraperitoneal injection and then by superfusion on exposed mesentery.
Objective: Chronic hypertension is associated with an increased risk for tissue injury that may be mediated in part by endothelium and inflammatory cells. To clarify a possible underlying mechanisms, we examined leukocyte migration in the microcirculation and concomitant parenchymal cell death.
Methods: The mesentery of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats, was examined with digital fluorescence microscopy after topical stimulation with an inflammatory mediator (f-met-leu-phe, 10(-8)M).