Publications by authors named "Edward D Robinson"

Inhibition of FBPase is considered a promising way to reduce hepatic gluconeogenesis and therefore could be a potential approach to treat type 2 diabetes. Herein we report the discovery of a series of purine phosphonic acids as AMP mimics targeting the AMP site of FBPase, which was achieved using a structure-guided drug design approach. These non-nucleotide purine analogues inhibit FBPase in a similar manner and with similar potency as AMP.

View Article and Find Full Text PDF

A series of oxamyl dipeptides were optimized for pan caspase inhibition, anti-apoptotic cellular activity and in vivo efficacy. This structure-activity relationship study focused on the P4 oxamides and warhead moieties. Primarily on the basis of in vitro data, inhibitors were selected for study in a murine model of alpha-Fas-induced liver injury.

View Article and Find Full Text PDF

Various heterocyclic hetero-methyl ketones of the 1-naphthyloxyacetyl-Val-Asp backbone have been prepared. A study of their structure-activity relationship (SAR) related to caspase-1, -3, -6, and -8 is reported. Their efficacy in a cellular model of cell death is also discussed.

View Article and Find Full Text PDF

Structural modifications were made to a previously described acyl dipeptide caspase inhibitor, leading to the oxamyl dipeptide series. Subsequent SAR studies directed toward the warhead, P2, and P4 regions of this novel peptidomimetic are described herein.

View Article and Find Full Text PDF

Various aryloxy methyl ketones of the 1-naphthyloxyacetyl-Val-Asp backbone have been prepared. A systematic study of their structure-activity relationship (SAR) related to caspases 1, 3, 6, and 8 is reported. Highly potent irreversible broad-spectrum caspase inhibitors have been identified.

View Article and Find Full Text PDF

A new structural class of broad spectrum caspase inhibitors was optimized for its activity against caspases 1, 3, 6, 7, and 8. The most potent compound had low nanomolar broad spectrum activity, in particular, single digit nanomolar inhibitory activity against caspase 8.

View Article and Find Full Text PDF