Publications by authors named "Edward D Hoegg"

Many fields of basic and applied sciences, including geochronology, astronomy, metabolism, etc., rely on the ability of mass spectrometry to obtain isotope ratio measurements having a high degree of certainty. The inability to resolve difficult isobaric interferences plagues certain measurements.

View Article and Find Full Text PDF

In a world where information-rich methods of analysis are often sought over those with superior figures of merit, there is a constant search for ionization methods which can be applied across diverse analytical systems. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) is a microplasma device which has the inherent capabilities to operate as a combined atomic and molecular (CAM) ionization source. The plasma is sustained by placement of a high voltage (~500 V, dc) onto an electrolytic solution through which the analyte is generally delivered to the discharge.

View Article and Find Full Text PDF

Many fundamental questions of astrophysics, biochemistry, and geology rely on the ability to accurately and precisely measure the mass and abundance of isotopes. Taken a step further, the capacity to perform such measurements on intact molecules provides insights into processes in diverse biological systems. Described here is the coupling of a combined atomic and molecular (CAM) ionization source, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma, with a commercially available ThermoScientific Fusion Lumos mass spectrometer.

View Article and Find Full Text PDF

The integration of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ion source with Orbitrap mass spectrometers has resulted in new opportunities in the field of isotope ratio mass spectrometry. In a field that has been dominated by thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS) on quadrupole and scanning-mode sector field analyzer platforms for highly accurate and precise measurements, the LS-APGD-Orbitrap system offers a benchtop instrument capable of meeting the rigorous International Target Values for measurement uncertainty for uranium (U). In order to benchmark the LS-APGD-Orbitrap, a series of U certified reference materials with increasing U isotopic composition were analyzed.

View Article and Find Full Text PDF

Rationale: The field of highly accurate and precise isotope ratio analysis, for use in nonproliferation, has been dominated by thermal ionization and inductively coupled plasma mass spectrometry. While these techniques are considered the gold standard for isotope ratio analysis, a downsized instrument capable of accurately and precisely measuring uranium (U) isotope ratios is desirable for field studies or in laboratories with limited infrastructure.

Methods: The developed system interfaces the liquid sampling, an atmospheric pressure glow discharge (LS-APGD) ion source, with a high-resolution Exactive Orbitrap mass spectrometer.

View Article and Find Full Text PDF

In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument.

View Article and Find Full Text PDF

A new efficient three-step process to annulate polycyclic aromatic hydrocarbons (PAHs) has been developed, providing access to PAHs with saturated rings that under current chemical methods would be difficult to produce in an efficient manner. This method relies on a palladium-catalyzed cross-coupling reaction of various brominated PAHs with cyclohexanone to yield α-arylated ketones, which are converted to regiospecific vinyl triflates and cyclized by a palladium-catalyzed intramolecular arene-vinyl triflate coupling to produce PAHs with incorporated saturated rings or "tetrahydroindeno-annulated" PAHs.

View Article and Find Full Text PDF