Publications by authors named "Edward Barnard"

Stacking van der Waals crystals allows for the on-demand creation of a periodic potential landscape to tailor the transport of quasiparticle excitations. We investigate the diffusion of photoexcited electron-hole pairs, or excitons, at the interface of WS/WSe van der Waals heterostructure over a wide range of temperatures. We observe the appearance of distinct interlayer excitons for parallel and antiparallel stacking and track their diffusion through spatially and temporally resolved photoluminescence spectroscopy from 30 to 250 K.

View Article and Find Full Text PDF

Objectives: In adult major trauma patients admission hypocalcaemia occurs in approximately half of cases and is associated with increased mortality. However, data amongst paediatric patients are limited. The objectives of this review were to determine the incidence of admission ionised hypocalcaemia in paediatric major trauma patients and to explore whether hypocalcaemia is associated with adverse outcomes.

View Article and Find Full Text PDF

Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime.

View Article and Find Full Text PDF

Scanning near-field optical microscopy (SNOM) is an important technique used to study the optical properties of material systems at the nanoscale. In previous work, we reported on the use of nanoimprinting to improve the reproducibility and throughput of near-field probes including complicated optical antenna structures such as the 'campanile' probe. However, precise control over the plasmonic gap size, which determines the near-field enhancement and spatial resolution, remains a challenge.

View Article and Find Full Text PDF

Background: Helicopter Emergency Medical Services (HEMS) are a limited and expensive resource, and should be intelligently tasked. HEMS dispatch was identified as a key research priority in 2011, with a call to identify a 'general set of criteria with the highest discriminating potential'. However, there have been no published data analyses in the past decade that specifically address this priority, and this priority has been reaffirmed in 2023.

View Article and Find Full Text PDF

Tip-enhanced photoluminescence (TRPL) is a powerful technique for spatially and spectrally probing local optical properties of 2-dimensional (2D) materials that are modulated by the local heterogeneities, revealing inaccessible dark states due to bright state overlap in conventional far-field microscopy at room temperature. While scattering-type near-field probes have shown the potential to selectively enhance and reveal dark exciton emission, their technical complexity and sensitivity can pose challenges under certain experimental conditions. Here, we present a highly reproducible and easy-to-fabricate near-field probe based on nanoimprint lithography and fiber-optic excitation and collection.

View Article and Find Full Text PDF

The ability to correlate optical hyperspectral mapping and high resolution topographic imaging is critically important to gain deep insight into the structure-function relationship of nanomaterial systems. Scanning near-field optical microscopy can achieve this goal, but at the cost of significant effort in probe fabrication and experimental expertise. To overcome these two limitations, we have developed a low-cost and high-throughput nanoimprinting technique to integrate a sharp pyramid structure on the end facet of a single-mode fiber that can be scanned with a simple tuning-fork technique.

View Article and Find Full Text PDF

Despite extensive studies on size effects in ferroelectrics, how structures and properties evolve in antiferroelectrics with reduced dimensions still remains elusive. Given the enormous potential of utilizing antiferroelectrics for high-energy-density storage applications, understanding their size effects will provide key information for optimizing device performances at small scales. Here, the fundamental intrinsic size dependence of antiferroelectricity in lead-free NaNbO membranes is investigated.

View Article and Find Full Text PDF

Competition between ground states at phase boundaries can lead to significant changes in properties under stimuli, particularly when these ground states have different crystal symmetries. A key challenge is to stabilize and control the coexistence of symmetry-distinct phases. Using BiFeO layers confined between layers of dielectric TbScO as a model system, we stabilize the mixed-phase coexistence of centrosymmetric and non-centrosymmetric BiFeO phases at room temperature with antipolar, insulating and polar semiconducting behaviour, respectively.

View Article and Find Full Text PDF

The structure of interfacial water near suspended graphene electrodes in contact with aqueous solutions of NaSO, NHCl, and (NH)SO has been studied using confocal Raman spectroscopy, sum frequency vibrational spectroscopy, and Kelvin probe force microscopy. SO anions were found to preferentially accumulate near the interface at an open circuit potential (OCP), creating an electrical field that orients water molecules below the interface, as revealed by the increased intensity of the O-H stretching peak of H-bonded water. No such increase is observed with NHCl at the OCP.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have found a way to see tiny layers of materials that are buried inside other materials using a special microscope called cathodoluminescence microscopy.
  • By changing the thickness of the outer layers, they can make the images clearer or brighter, helping to balance between how bright the light is and how sharp the details are.
  • They discovered that the movement of excitons (which are like energy packets) in the material was surprisingly even, allowing them to improve the clarity of their images even more.
View Article and Find Full Text PDF

Ferroelectric semiconductors are rare materials with both spontaneous polarizations and visible light absorptions that are promising for designing functional photoferroelectrics, such as optical switches and ferroelectric photovoltaics. The emerging halide perovskites with remarkable semiconducting properties also have the potential of being ferroelectric, yet the evidence of robust ferroelectricity in the typical three-dimensional hybrid halide perovskites has been elusive. Here, we report on the investigation of ferroelectricity in all-inorganic halide perovskites, CsGeX, with bandgaps of 1.

View Article and Find Full Text PDF

Polar textures have attracted substantial attention in recent years as a promising analog to spin-based textures in ferromagnets. Here, using optical second-harmonic generation–based circular dichroism, we demonstrate deterministic and reversible control of chirality over mesoscale regions in ferroelectric vortices using an applied electric field. The microscopic origins of the chirality, the pathway during the switching, and the mechanism for electric field control are described theoretically via phase-field modeling and second-principles simulations, and experimentally by examination of the microscopic response of the vortices under an applied field.

View Article and Find Full Text PDF

Two-dimensional (2D) excitons arise from electron-hole confinement along one spatial dimension. Such excitations are often described in terms of Frenkel or Wannier limits according to the degree of exciton spatial localization and the surrounding dielectric environment. In hybrid material systems, such as the 2D perovskites, the complex underlying interactions lead to excitons of an intermediate nature, whose description lies somewhere between the two limits, and a better physical description is needed.

View Article and Find Full Text PDF

Although some neurodegenerative diseases can be identified by behavioral characteristics relatively late in disease progression, we currently lack methods to predict who has developed disease before the onset of symptoms, when onset will occur, or the outcome of therapeutics. New biomarkers are needed. Here we describe spectral phenotyping, a new kind of biomarker that makes disease predictions based on chemical rather than biological endpoints in cells.

View Article and Find Full Text PDF

For two-dimensional (2D) layered semiconductors, control over atomic defects and understanding of their electronic and optical functionality represent major challenges towards developing a mature semiconductor technology using such materials. Here, we correlate generation, optical spectroscopy, atomic resolution imaging, and ab initio theory of chalcogen vacancies in monolayer MoS. Chalcogen vacancies are selectively generated by in-vacuo annealing, but also focused ion beam exposure.

View Article and Find Full Text PDF

Scanning transmission electron microscopy (STEM) allows for imaging, diffraction, and spectroscopy of materials on length scales ranging from microns to atoms. By using a high-speed, direct electron detector, it is now possible to record a full two-dimensional (2D) image of the diffracted electron beam at each probe position, typically a 2D grid of probe positions. These 4D-STEM datasets are rich in information, including signatures of the local structure, orientation, deformation, electromagnetic fields, and other sample-dependent properties.

View Article and Find Full Text PDF

Rainbow light trapping in plasmonic devices allows for field enhancement of multiple wavelengths within a single device. However, many of these devices lack precise control over spatial and spectral enhancement profiles and cannot provide extremely high localised field strengths. Here we present a versatile, analytical design paradigm for rainbow trapping in nanogroove arrays by utilising both the groove-width and groove-length as tuning parameters.

View Article and Find Full Text PDF

Light matter interactions are greatly enhanced in two-dimensional (2D) semiconductors because of strong excitonic effects. Many optoelectronic applications would benefit from creating stacks of atomically thin 2D semiconductors separated by insulating barrier layers, forming multiquantum-well structures. However, most 2D transition metal chalcogenide systems require serial stacking to create van der Waals multilayers.

View Article and Find Full Text PDF

Quantum dot-like single-photon sources in transition metal dichalcogenides (TMDs) exhibit appealing quantum optical properties but lack a well-defined atomic structure and are subject to large spectral variability. Here, we demonstrate electrically stimulated photon emission from individual atomic defects in monolayer WS and directly correlate the emission with the local atomic and electronic structure. Radiative transitions are locally excited by sequential inelastic electron tunneling from a metallic tip into selected discrete defect states in the WS bandgap.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides (TMDCs) are promising materials for next generation optoelectronic devices. The exciton diffusion length is a critical parameter that reflects the quality of exciton transport in monolayer TMDCs and limits the performance of many excitonic devices. Although diffusion lengths of a few hundred nanometers have been reported in the literature for as-exfoliated monolayers, these measurements are convoluted by neutral and charged excitons (trions) that coexist at room temperature due to natural background doping.

View Article and Find Full Text PDF

Free-standing ultrathin (∼2 nm) films of several oxides (AlO,TiO, and others) have been developed, which are mechanically robust and transparent to electrons with ≥ 200 eV and to photons. We demonstrate their applicability in environmental X-ray photoelectron and infrared spectroscopy for molecular level studies of solid-gas (≥1 bar) and solid-liquid interfaces. These films act as membranes closing a reaction cell and as substrates and electrodes for electrochemical reactions.

View Article and Find Full Text PDF

Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large and continuously variable strain states, thus limiting the potential for designing and tuning the desired properties of ferroelectric films. Here, we observe and explore dynamic strain-induced ferroelectricity in SrTiO by laminating freestanding oxide films onto a stretchable polymer substrate.

View Article and Find Full Text PDF