Publications by authors named "Edward B Rastetter"

A significant warming effect on arctic tundra is greening. Although this increase in predominantly woody vegetation has been linked to increases in gross primary productivity, increasing temperatures also stimulate ecosystem respiration. We present a novel analysis from small-scale plot measurements showing that the shape of the temperature- and light-dependent sink-to-source threshold (where net ecosystem exchange (NEE) equals zero) differs between two tussock tundra ecosystems differing in leaf area index (LAI).

View Article and Find Full Text PDF

Whole-ecosystem interactions and feedbacks constrain ecosystem responses to environmental change. The effects of these constraints on responses to climate trends and extreme weather events have been well studied. Here we examine how these constraints respond to changes in day-to-day weather variability without changing the long-term mean weather.

View Article and Find Full Text PDF

We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO ), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO , warming, and decreased precipitation combined because higher water-use efficiency with elevated CO and higher fertility with warming compensate for responses to drought. Response to elevated CO , warming, and increased precipitation combined is additive.

View Article and Find Full Text PDF

We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how "explicitly representing grazers" vs. "having grazer effects implicitly aggregated in with other biogeochemical processes in the model" alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate compared with the processes with which they are typically aggregated.

View Article and Find Full Text PDF

Recent unprecedented fires in the Arctic during the past two decades have indicated a pressing need to understand the long-term ecological impacts of fire in this biome. Anecdotal evidence suggests that tundra fires can induce regime shifts that change tussock tundra to more shrub-dominated ecosystems. However, the ecological mechanisms regulating these shifts are poorly understood, but are hypothesized to involve changes to nutrient availability in this nutrient limited system.

View Article and Find Full Text PDF

Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood.

View Article and Find Full Text PDF

Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-decades.

View Article and Find Full Text PDF

Secondary forests now make up more than one-half of all tropical forests, and constraints on their biomass accumulation will influence the strength of the terrestrial carbon (C) sink in the coming decades. However the variance in secondary tropical forest biomass for a given stand age and climate is high and our understanding of why is limited. We constructed a model of terrestrial C, nitrogen (N), and phosphorus (P) cycling to examine the influence of disturbance and management practices on nutrient limitation and biomass recovery in secondary tropical forests.

View Article and Find Full Text PDF

To investigate the underlying mechanisms that control long-term recovery of tundra carbon (C) and nutrients after fire, we employed the Multiple Element Limitation (MEL) model to simulate 200-yr post-fire changes in the biogeochemistry of three sites along a burn severity gradient in response to increases in air temperature, CO concentration, nitrogen (N) deposition, and phosphorus (P) weathering rates. The simulations were conducted for severely burned, moderately burned, and unburned arctic tundra. Our simulations indicated that recovery of C balance after fire was mainly determined by the internal redistribution of nutrients among ecosystem components (controlled by air temperature), rather than the supply of nutrients from external sources (e.

View Article and Find Full Text PDF

Fire frequency has dramatically increased in the tundra of northern Alaska, USA, which has major implications for the carbon budget of the region and the functioning of these ecosystems, which support important wildlife species. We investigated the postfire succession of plant and soil carbon (C), nitrogen (N), and phosphorus (P) fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River fire scar in northern Alaska. Modeling results indicated that the early regrowth of postfire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability, because of the initially low leaf area and relatively high inorganic N and P concentrations in soil.

View Article and Find Full Text PDF

The carbon balance of Arctic ecosystems is particularly sensitive to global environmental change. Leaf respiration (R), a temperature-dependent key process in determining the carbon balance, is not well-understood in Arctic plants. The potential for plants to acclimate to warmer conditions could strongly impact future global carbon balance.

View Article and Find Full Text PDF

We investigated how radiation conditions within a tundra canopy were linked to canopy photosynthesis, and how this linkage explained photosynthetic sensitivity to sky conditions, that is total radiation and its diffuse fraction. We measured within canopy radiation at leaf scales and net CO2 exchanges at canopy scales, under varied total irradiance and diffuse fraction, in Alaskan shrub tundra. Normalised mean radiation profiles within canopies showed no significant differences with varied diffuse fractions.

View Article and Find Full Text PDF

Resource partitioning, facilitation, and sampling effect are the three mechanisms behind the biodiversity effect, which is depicted usually as the effect of plant-species richness on aboveground net primary production. These mechanisms operate simultaneously but their relative importance and interactions are difficult to unravel experimentally. Thus, niche differentiation and facilitation have been lumped together and separated from the sampling effect.

View Article and Find Full Text PDF

In the foothills of the Brooks Range, Alaska, different glaciation histories have created landscapes with varying soil age. Productivity of most of these landscapes is generally N limited, but varies widely, as do plant species composition and soil properties (e.g.

View Article and Find Full Text PDF

Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub-Arctic tundra are leaf area index (LT ) and total foliar nitrogen (NT ). LT and NT have been shown to be tightly coupled across PFTs in sub-Arctic tundra vegetation, which simplifies up-scaling by allowing quantification of the main drivers of P from remotely sensed LT .

View Article and Find Full Text PDF

Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series.

View Article and Find Full Text PDF

Ecologists have long been intrigued by the ways co-occurring species divide limiting resources. Such resource partitioning, or niche differentiation, may promote species diversity by reducing competition. Although resource partitioning is an important determinant of species diversity and composition in animal communities, its importance in structuring plant communities has been difficult to resolve.

View Article and Find Full Text PDF

Assessments of carbon (C) fluxes in the Arctic require detailed data on both how and why these fluxes vary across the landscape. Such assessments are complicated because tundra vegetation has diverse structure and function at both local and regional scales. To investigate this diversity, the Arctic Flux Study has used the eddy covariance technique to generate ecosystem CO -exchange data along a transect in northern Alaska.

View Article and Find Full Text PDF

As regional and global scales become more important to ecologists, methods must be developed for the application of existing fine-scale knowledge to predict coarser-scale ecosystem properties. This generally involves some form of model in which fine-scale components are aggregated. This aggregation is necessary to avoid the cumulative error associated with the estimation of a large number of parameters.

View Article and Find Full Text PDF

A model that simulates carbon (C) and nitrogen (N) cycles in terrestrial ecosystems is developed. The model is based on the principle that the responses of terrestrial ecosystems to changes in CO(2), climate, and N deposition will encompass enzymatic responses, shifts in tissue stoichiometry, changes in biomass allocation among plant tissues, altered rates of soil organic matter turnover and N mineralization, and ultimately a redistribution of C and N between vegetation and soils. The model is a highly aggregated, process-based, biogeochemical model designed to examine changes in the fluxes and allocation of C and N among foliage, fine roots, stems, and soils in response to changes in atmospheric CO(2) concentration, temperature, soil water, irradiance, and inorganic nitrogen inputs.

View Article and Find Full Text PDF