Unlabelled: A novel Hendra virus (HeV) genotype (HeV genotype 2 [HeV-g2]) was recently isolated from a deceased horse, revealing high-sequence conservation and antigenic similarities with the prototypic strain, HeV-g1. As the receptor-binding (G) and fusion (F) glycoproteins of HeV are essential for mediating viral entry, functional characterization of emerging HeV genotypic variants is key to understanding viral entry mechanisms and broader virus-host co-evolution. We first confirmed that HeV-g2 and HeV-g1 glycoproteins share a close phylogenetic relationship, underscoring HeV-g2's relevance to global health.
View Article and Find Full Text PDFIn October 2021, the first contemporary detection of Hendra virus genotype 2 (HeV-g2) was made by veterinary priority disease investigation in a horse near Newcastle, New South Wales, Australia, as part of routine veterinary priority disease surveillance. This discovery followed an update of Hendra virus diagnostic assays following retrospective identification of this variant from 2015 via sentinel emerging infectious disease research, enabling timely detection of this case. The sole infected horse was euthanized in moribund condition.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2022
We identified and isolated a novel Hendra virus (HeV) variant not detected by routine testing from a horse in Queensland, Australia, that died from acute illness with signs consistent with HeV infection. Using whole-genome sequencing and phylogenetic analysis, we determined the variant had ≈83% nt identity with prototypic HeV. In silico and in vitro comparisons of the receptor-binding protein with prototypic HeV support that the human monoclonal antibody m102.
View Article and Find Full Text PDFHendra virus and Nipah virus (NiV), members of the Henipavirus (HNV) genus, are zoonotic paramyxoviruses known to cause severe disease across six mammalian orders, including humans. We isolated a panel of human monoclonal antibodies (mAbs) from the B cells of an individual with prior exposure to equine Hendra virus (HeV) vaccine, targeting distinct antigenic sites. The most potent class of cross-reactive antibodies achieves neutralization by blocking viral attachment to the host cell receptors ephrin-B2 and ephrin-B3, with a second class being enhanced by receptor binding.
View Article and Find Full Text PDFHendra (HeV) and Nipah (NiV) viruses are emerging zoonotic pathogens in the Henipavirus genus causing outbreaks of disease with very high case fatality rates. Here, we report the first naturally occurring human monoclonal antibodies (mAbs) against HeV receptor binding protein (RBP). All isolated mAbs neutralized HeV, and some also neutralized NiV.
View Article and Find Full Text PDFSignificant global efforts have been directed towards understanding the epidemiology of highly pathogenic avian influenza (HPAI) across poultry production systems and in wild-bird reservoirs, yet understanding of disease dynamics in the village poultry setting remains limited. This article provides a detailed account of the first laboratory-confirmed outbreak of HPAI in the south-eastern provinces of Lao PDR, which occurred in a village in Sekong Province in October 2018. Perspectives from an anthropologist conducting fieldwork at the time of the outbreak, clinical and epidemiological observations by an Australian veterinarian are combined with laboratory characterization and sequencing of the virus to provide insights about disease dynamics, biosecurity, outbreak response and impediments to disease surveillance.
View Article and Find Full Text PDFBackground: Hendra virus (HeV) infection is endemic in Australian flying-fox populations. Habitat loss has increased the peri-urban presence of flying-foxes, increasing the risk of contact and therefore viral 'spillovers' into horse and human populations. An equine vaccine is available and horse-husbandry practices that minimize HeV exposure are encouraged, but their adoption is suboptimal.
View Article and Find Full Text PDFIn May 2013, the first cases of Australian bat lyssavirus infections in domestic animals were identified in Australia. Two horses (filly-H1 and gelding-H2) were infected with the Yellow-bellied sheathtail bat (YBST) variant of Australian bat lyssavirus (ABLV). The horses presented with neurological signs, pyrexia and progressing ataxia.
View Article and Find Full Text PDFAustralian bat lyssavirus (ABLV) is a recently emerged rhabdovirus of the genus lyssavirus considered endemic in Australian bat populations that causes a neurological disease in people indistinguishable from clinical rabies. There are two distinct variants of ABLV, one that circulates in frugivorous bats (genus Pteropus) and the other in insectivorous microbats (genus Saccolaimus). Three fatal human cases of ABLV infection have been reported, the most recent in 2013, and each manifested as acute encephalitis but with variable incubation periods.
View Article and Find Full Text PDF