Loss of proteostasis is a highly conserved feature of aging across model organisms and results in the accumulation of insoluble protein aggregates. Protein insolubility is also a unifying feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), in which hundreds of insoluble proteins associate with aggregated amyloid beta (Aβ) in senile plaques. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven generalized protein insolubility as a contributing factor.
View Article and Find Full Text PDFLoss of proteostasis is a highly conserved feature of aging across model organisms and typically results in the accumulation of insoluble protein aggregates. Protein insolubility is a central feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), where hundreds of insoluble proteins associate with aggregated amyloid beta (Aβ) in senile plaques. Moreover, proteins that become insoluble during aging in model organisms are capable of accelerating Aβ aggregation in vitro.
View Article and Find Full Text PDFSeveral neuronal populations orchestrate neocortical development during mammalian embryogenesis. These include the glutamatergic subplate-, Cajal-Retzius-, and ventral pallium-derived populations, which coordinate cortical wiring, migration, and proliferation, respectively. These transient populations are primarily derived from other non-cortical pallial sources that migrate to the dorsal pallium.
View Article and Find Full Text PDF