A novel microfluidic optical cell is presented that enables simultaneous measurement of both light absorbance and fluorescence on microlitre volumes of fluid. The chip design is based on an inlaid fabrication technique using clear and opaque poly(methyl methacrylate) or PMMA to create a 20.2 mm long optical cell.
View Article and Find Full Text PDFReagent-based colorimetric analyzers often heat the fluid under analysis for improved reaction kinetics, whilst also aiming to minimize energy use per measurement. Here, a novel method of conserving heat energy on such microfluidic systems is presented. Our design reduces heat transfer to the environment by surrounding the heated optical cell on four sides with integral air pockets, thereby realizing an insulated and suspended bridge structure.
View Article and Find Full Text PDF