This research was undertaken to optimize the phenolic compound removal from Olive Mill Wastewater (OMW) by sawdust and red clay as natural adsorbents. Fractional factorial experimental design at 2 was used in order to optimize the experimental conditions for high removal efficiency. Statistics ANOVA analysis, Fisher's test, and Student's test suggested that the adsorbent dose has the most significant influence on polyphenol removal for both adsorbents.
View Article and Find Full Text PDFBacterial contamination of groundwater has always been an ecological problem worthy of attention. In this study, serovar Typhimurium with different flagellar phenotypes mainly characterized during host-pathogen interaction were analyzed for their transport and deposition behavior in porous media. Column transport experiments and a modified mobile-immobile model were applicated on different strains with flagellar motility (wild-type) or without motility (Δ), without flagella (Δ), methylated and unmethylated flagellin (Δ), and different flagella phases (, ).
View Article and Find Full Text PDFThe current study was carried out to treat the olive mill wastewater (OMW) via infiltration percolation process, using low-cost natural adsorbents that could improve the ability of the system to enhance the disposal rate of elimination of pollutant from the OMW. The experimental pilot was composed of three PVC (polyvinyl chloride) columns with 10 cm in diameter and 110-cm height equipped with lateral air entries. Each column was filled with four layers of 10 cm of a mixture of sand (70%), charcoal (20%) and sawdust (10%) respectively.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2021
Water-saturated column experiments were conducted to study the effect of nonwoven geotextiles on bacteria transport and deposition through two sandy porous media with grain sizes 1.05 and 3.25 mm.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2021
Bacterial transport and deposition play an important role in the assessment and prediction of subsurface pollution risks. Bacteria transport experiments were performed under unsaturated flow conditions in an aggregated porous medium at the laboratory column scale, to investigate how the inter- and intra-aggregated pore space of this medium could affect transport and deposition under unsaturated flow conditions, where inter- and intra-pore spaces are not fully activated. The results obtained through experimental observations and numerical simulations showed that some intra- and inter-pore space of this medium was excluded from bacteria transport and retention, as confirmed by the non-uniform transport of bacteria pathways in the aggregated porous media under unsaturated flow conditions.
View Article and Find Full Text PDFExperimental and modeling studies were performed to investigate bacteria deposition behavior in unsaturated porous media. The coupled effect of different forces, acting on bacteria at solid-air-water interfaces and their relative importance on bacteria deposition mechanisms was explored by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as hydrophobic, capillary and hydrodynamic forces. Negatively charged non-motile bacteria and quartz sands were used in packed column experiments.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2016
The simultaneous role of bacteria cell properties and porous media grain size on bacteria transport and deposition behavior was investigated in this study. Transport column experiments and numerical HYDRUS-1D simulations of three bacteria with different cell properties (Escherichia coli, Klebsiella oxytoca, and Rhodococcus rhodochrous) were carried out on two sandy media with different grain sizes, under saturated steady state flow conditions. Each bacterium was characterized by cell size and shape, cell motility, electrophoretic mobility, zeta potential, hydrophobicity and potential of interaction with the sand surface.
View Article and Find Full Text PDFBioprocess Biosyst Eng
September 2014
Monitoring of the biological degradation of a substrate by microorganisms is a key issue, especially in the soil bioremediation area. Respiration measurement is the easiest way to obtain online information on the biological activity. Nevertheless, it is indirectly related to substrate consumption and microbial growth.
View Article and Find Full Text PDF