Key Message: The machine learning algorithm extreme gradient boosting can be employed to address the issue of long data gaps in individual trees, without the need for additional tree-growth data or climatic variables.
Abstract: The susceptibility of dendrometer devices to technical failures often makes time-series analyses challenging. Resulting data gaps decrease sample size and complicate time-series comparison and integration.
Forests are essential to climate change mitigation through carbon sequestration, transpiration, and turnover. However, the quantification of climate change impacts on forest growth is uncertain and even contradictory in some regions, which is the result of spatially constrained studies. Here, we use an unprecedented network of 1.
View Article and Find Full Text PDFWith ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species.
View Article and Find Full Text PDFAs major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues.
View Article and Find Full Text PDFSummer droughts are affecting the productivity and functioning of central European forests, with potentially lasting consequences for species composition and carbon sequestration. Long-term recovery rates and individual growth responses that may diverge from species-specific and population-wide behaviour are, however, poorly understood. Here, we present 2052 pine (Pinus sylvestris) ring width series from 19 forest sites in south-west Germany to investigate growth responses of individual trees to the exceptionally hot and dry summer of 1976.
View Article and Find Full Text PDFWood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e.
View Article and Find Full Text PDFStudy Region: The Morava River basin, Czech Republic, Danube Basin, Central Europe.
Study Focus: Hydrological summer extremes represent a prominent natural hazard in Central Europe. River low flows constrain transport and water supply for agriculture, industry and society, and flood events are known to cause material damage and human loss.
Tree-ring data has been widely used to inform about tree growth responses to drought at the individual scale, but less is known about how tree growth sensitivity to drought scales up driving changes in forest dynamics. Here, we related tree-ring growth chronologies and stand-level forest changes in basal area from two independent data sets to test if tree-ring responses to drought match stand forest dynamics (stand basal area growth, ingrowth, and mortality). We assessed if tree growth and changes in forest basal area covary as a function of spatial scale and tree taxa (gymnosperm or angiosperm).
View Article and Find Full Text PDFWildfires are becoming an increasing threat to many communities worldwide. There has been substantial progress towards understanding the proximal causes of increased fire activity in recent years at regional and national scales. However, subcontinental scale examinations of the commonalities and differences in the drivers of fire activity across different regions are rare in the Mediterranean zone of the European Union (EUMed).
View Article and Find Full Text PDFFuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6-15 °C and 395-933 mm, respectively.
View Article and Find Full Text PDFWood formation consumes around 15% of the anthropogenic CO emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability.
View Article and Find Full Text PDFTo understand better the adaptation strategies of intra-annual radial growth in and to local environmental conditions, we examined the seasonal rhythm of cambial activity and cell differentiation at tissue and cellular levels. Two contrasting sites differing in temperature and amount of precipitation were selected for each species, one typical for their growth and the other represented border climatic conditions, where the two species coexisted. Mature trees from Mediterranean (Spain) and sub-Mediterranean (Slovenia) sites, and from sub-Mediterranean (Slovenia) and temperate (Slovenia) sites were selected.
View Article and Find Full Text PDFWood formation in European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) was intra-annually monitored to examine plastic responses of the xylem phenology according to altitude in one of the southernmost areas of their distribution range, i.
View Article and Find Full Text PDFWood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited.
View Article and Find Full Text PDF