Pharmaceutical heparins from different manufacturers may present heterogeneities due to particular extraction and purification procedures or even variations in the raw material manipulation. Heparins obtained from different tissues also differ in their structure and activity. Nevertheless, there is an increased demand for more accurate assessments to ensure the similarities of pharmaceutical heparins.
View Article and Find Full Text PDFHeparin has already been found in a variety of animal tissues but only few of them became effective sources for production of pharmaceutical preparations. Here, we correlate physical-chemical features and anticoagulant activities of structurally similar heparins employed in the past (from bovine lung, HBL), in the present (from porcine intestine, HPI) and in development for future use (from ovine intestine, HOI). Although they indeed have similar composition, our physical-chemical analyses with different chromatography and spectrometric techniques show that both HOI and HBL have molecular size notably lower than HPI and that the proportions of some of their minor saccharide components can vary substantially.
View Article and Find Full Text PDFHeparin is a centennial anticoagulant drug broadly employed for treatment and prophylaxis of thromboembolic conditions. Although unfractionated heparin (UFH) has already been shown to have remarkable pharmacological potential for treating a variety of diseases unrelated with thromboembolism, including cancer, atherosclerosis, inflammation, and virus infections, its high anticoagulant potency makes the doses necessary to exert non-hemostatic effects unsafe due to an elevated bleeding risk. Our group recently developed a new low-anticoagulant bovine heparin (LABH) bearing the same disaccharide building blocks of the UFH gold standard sourced from porcine mucosa (HPI) but with anticoagulant potency approximately 85% lower (approximately 25 and 180 Heparin International Units [IU]/mg).
View Article and Find Full Text PDFAlthough metastasis is the primary cause of death in patients with malignant solid tumors, efficient anti-metastatic therapies are not clinically available currently. Sulfated glycosaminoglycans from marine sources have shown promising pharmacological effects, acting on different steps of the metastatic process. Oversulfated dermatan sulfates from ascidians are effective in preventing metastasis by inhibition of P-selectin, a platelet surface protein involved in the platelet-tumor cell emboli formation.
View Article and Find Full Text PDFMarine organisms have been proven to be a valuable source of bioactive compounds. Among them, we highlight the sulfated galactans (SGs) from seaweeds, which besides being massively exploited as industrial thickening and gelling agents (agarans and carrageenans), have also shown promising pharmacological properties. Investigations on the non-agaran/-carrageenan SG from the red algae Bothryocladia occidentalis (SGBo) have demonstrated clear correlations between physical-chemical features and biological activities.
View Article and Find Full Text PDFMarine ancestors of freshwater sponges had to undergo a series of physiological adaptations to colonize harsh and heterogeneous limnic environments. Besides reduced salinity, river-lake systems also have calcium concentrations far lower than seawater. Cell adhesion in sponges is mediated by calcium-dependent multivalent self-interactions of sulfated polysaccharide components of membrane-bound proteoglycans named aggregation factors.
View Article and Find Full Text PDFMarine invertebrates produce different kinds of sulfated polysaccharides. These glycans play essential roles in several biological processes and the study of these molecules is promising in a variety of fields. In the following sections, we describe the materials and methods used for the extraction, purification, and characterization of marine invertebrate-derived glycosaminoglycans.
View Article and Find Full Text PDFMost of the unfractionated heparin (UFH) consumed worldwide is manufactured using porcine mucosa as raw material (HPI); however, some countries also employ products sourced from bovine mucosa (HBI) as interchangeable versions of the gold standard HPI. Although accounted as a single UFH, HBI, and HPI have differing anticoagulant activities (~100 and 200 IU mg, respectively) because of their compositional dissimilarities. The concomitant use of HBI and HPI in Brazil had already provoked serious bleeding incidents, which led to the withdrawal of HBI products in 2009.
View Article and Find Full Text PDFMost of the unfractionated and low-molecular-weight heparins available worldwide are produced by Chinese companies from porcine mucosa. China is the world's largest producer of pork and thus has plenty of raw material to produce heparins. However, the deadly African Swine Fever (ASF) outbreaks afflicting China since August 2018 may cause extensive losses to the pig herd, with serious consequences for the global supply of heparins.
View Article and Find Full Text PDFAim: To evaluate different intratracheal flow rates on extracellular matrix content and lung mechanics in an established lung decellularization protocol.
Materials & Methods: Healthy mice were used: 15 for decellularization and five to serve as controls. Fluids were instilled at 5, 10 and 20 ml/min flow rates through tracheal cannula and right ventricular cavity (0.
Fucosylated chondroitin sulfates (FCSs) and sulfated fucans (SFs) are conspicuous components of the body wall of sea cucumbers (Holothuroidea). FCSs are composed of a central core of chondroitin sulfate (CS) decorated with branches of mono- or both mono- and disaccharides of α-fucose (FCS types I and II, respectively). FCSs type II have heterogeneous and irregularly distributed α-fucose branches; however, the novel FCS type II from Holothuria lentiginosa described herein via solution nuclear magnetic resonance has strikingly homogeneous α-fucose branches neatly distributed along its CS core.
View Article and Find Full Text PDFElectrophoresis
February 2018
Cationic dyes such as toluidin blue are commonly employed to visualize glycosaminoglycans (GAGs) on electrophoresis gels; however, the carbocyanine-based dye Stains-all have been increasingly used to stain the non-sulfated hyaluronic acid and other GAGs in submicrogram quantities. In this short communication, we demonstrate that Stains-all is able to stain the most common GAGs on polyacrylamide gels with distinct and contrasting colors in a reproducible manner. We also show that this staining method is useful to identify GAGs present both in mixtures and in submicrogram quantities.
View Article and Find Full Text PDFSulfated fucans from marine invertebrates are composed of regular repetitive fucose building-blocks with sulfation patterns differing in a species-specific manner. These polysaccharides can act as mediators of the acrosome reaction of sea-urchins or play a structural role in the body-wall of sea-cucumbers. Other fucose-rich polysaccharides found in the body-wall of sea-cucumbers are the fucosylated chondroitin sulfates composed of a vertebrate-like chondroitin sulfate decorated with species-specific fucose branches.
View Article and Find Full Text PDFFucosylated chondroitin sulfate (FCS) from sea cucumbers is composed of a chondroitin sulfate (CS) central core and branches of sulfated fucose. The structure of this complex glycosaminoglycan is usually investigated via nuclear magnetic resonance (NMR) analyses of the intact molecule, ergo through a top-down approach, which often yield spectra with intricate sets of signals. Here we employed a bottom-up approach to analyze the FCSs from the sea cucumbers Isostichopus badionotus and Ludwigothurea grisea from their basic constituents, viz.
View Article and Find Full Text PDFGlycosaminoglycans are carbohydrate-based compounds widely employed as nutraceuticals or prescribed drugs. Oral formulations of chondroitin sulfate combined with glucosamine sulfate have been increasingly used to treat the symptoms of osteoarthritis and osteoarthrosis. The chondroitin sulfate of these combinations can be obtained from shark or bovine cartilages and hence presents differences regarding the proportions of 4- and 6-sulfated -acetyl β-d-galactosamine units.
View Article and Find Full Text PDFBrazil is among the first countries approving the commercialization and clinical use of biosimilar enoxaparins. Our research group has performed quality control assessments of these drugs over the last decade. Areas covered: We have not found noticeable differences between Brazilian biosimilar enoxaparins and the original product regarding their physicochemical properties, disaccharide composition, anticoagulant activity, bioavailability and safety.
View Article and Find Full Text PDFHeparins extracted from different animal sources have been conventionally considered effective anticoagulant and antithrombotic agents despite of their pharmacological dissimilarities. We performed herein a systematic analysis on the physicochemical properties, disaccharide composition, in vitro anticoagulant potency and in vivo antithrombotic and bleeding effects of several batches of pharmaceutical grade heparins obtained from porcine intestine, bovine intestine and bovine lung. Each of these three heparin types unambiguously presented differences in their chemical structures, physicochemical properties and/or haemostatic effects.
View Article and Find Full Text PDFThe antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations.
View Article and Find Full Text PDFEarly metazoans had to evolve the first cell adhesion mechanism addressed to maintain a distinctive multicellular morphology. As the oldest extant animals, sponges are good candidates for possessing remnants of the molecules responsible for this crucial evolutionary innovation. Cell adhesion in sponges is mediated by the calcium-dependent multivalent self-interactions of sulfated polysaccharides components of extracellular membrane-bound proteoglycans, namely aggregation factors.
View Article and Find Full Text PDFFucosylated chondroitin sulfate (FCS) is a glycosaminoglycan found in sea cucumbers. It has a backbone like that of mammalian chondroitin sulfate (4-β-d-GlcA-1→3-β-d-GalNAc-1)n but substituted at the 3rd position of the β-d-glururonic acid residues with α-fucose branches. The structure of these branches varies among FCSs extracted from different species of sea cucumbers, as revealed by solution NMR spectroscopy.
View Article and Find Full Text PDFSeveral approaches have been proposed to assess impacts on natural assemblages. Ideally, the potentially impacted site and multiple reference sites are sampled through time, before and after the impact. Often, however, the lack of information regarding the potential overall impact, the lack of knowledge about the environment in many regions worldwide, budgets constraints and the increasing dimensions of human activities compromise the reliability of the impact assessment.
View Article and Find Full Text PDFMarine sponges (Porifera) display an ancestral type of cell-cell adhesion, based on carbohydrate-carbohydrate interaction. The aim of the present work was to investigate further details of this adhesion by using, as a model, the in vitro aggregation of dissociated sponge cells. Our results showed the participation of sulfated polysaccharides in this cell-cell interaction, as based on the following observations: (1) a variety of sponge cells contained similar sulfated polysaccharides as surface-associated molecules and as intracellular inclusions; (2) (35)S-sulfate metabolic labeling of dissociated sponge cells revealed that the majority (two thirds) of the total sulfated polysaccharide occurred as a cell-surface-associated molecule; (3) the aggregation process of dissociated sponge cells demanded the active de novo synthesis of sulfated polysaccharides, which ceased as cell aggregation reached a plateau; (4) the typical well-organized aggregates of sponge cells, known as primmorphs, contained three cell types showing sulfated polysaccharides on their cell surface; (5) collagen fibrils were also produced by the primmorphs in order to fill the extracellular spaces of their inner portion and the external layer surrounding their entire surface.
View Article and Find Full Text PDFMarine sponges (Porifera) are ancient and simple eumetazoans. They constitute key organisms in the evolution from unicellular to multicellular animals. We now demonstrated that pure sulfated polysaccharides from marine sponges are responsible for the species-specific cell-cell interaction in these invertebrates.
View Article and Find Full Text PDF